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1 Introduction to Spin Electronics

J. F. Gregg

Clarendon Laboratory, Oxford University, Parks Road, Oxford OX1 3PU, U.K.

1.1 Coey’s Lemma

The driving force behind Spin Electronics is neatly summarized in J. M. D.
Coey’s incisive observation [1] that “Conventional Electronics has ignored the
spin of the electron”. In every hi-fi and radio set, 50% of the conducting electrons
tend to be spin-up and the remainder are spin down (where up and down relate
to some locally induced quantisation axis in the relevant wires and devices).
Yet, although electron spin was known about for most of the 20th Century, no
technical use is made of this fact.

1.2 The Two Spin Channel Model

The mechanistic basis for Spin Electronics is almost as old as the concept of
electron spin itself. In the mid-thirties, Mott postulated [2] that certain elec-
trical transport anomalies in the behaviour of metallic ferromagnets arose from
the ability to consider the spin-up and spin-down conduction electrons as two
independent families of charge carriers, each with its own distinct transport prop-
erties. Mott’s hypothesis essentially is that spin-flip scattering is sufficiently rare
on the timescale of all the other scattering processes canonical to the problem
that defections from one spin channel to the other may be ignored, hence the
relative independence of the two channels [3,4,5].

1.2.1 Spin Asymmetry

The other necessary ingredient of this model is that the two spin families con-
tribute very differently to the electrical transport processes. This may be because
the number densities of each carrier type are different, or it may because they
have different mobilities – in other words that the same momentum or energy
scattering mechanisms treat them very differently. In either case, the asymmetry
which makes spin-up electrons behave differently to spin-down electrons arises
because the ferromagnetic exchange field splits the spin-up and spin-down con-
duction bands, leaving different bandstructures evident at the Fermi surface.
If the densities of electron states differs at the Fermi surface, then clearly the
number of electrons participating in the conduction process is different for each
spin channel. However, more subtly, different densities of states for spin-up and
spin-down implies that the susceptibility to scattering of the two spin types is
different, and this in turn leads to their having different mobilities.

M.J. Thornton and M. Ziese (Eds.): LNP 569, pp. 3–31, 2001.
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4 J. F. Gregg

1.2.2 Spin Accumulation

Let us consider two spin channels of different mobility (Fig. 1.1). When an
electric field is applied to the metal, there is a shift, ∆k, in momentum space of
the spin-up and spin-down Fermi surfaces in accordance with the equation:

F = eE = �
dk

dt
= �

∆k

τ
(1.1)

where F is force on carrier, E is electric field, e is electronic charge, τ is electron
scattering time given by µ = eτ/m∗, µ being the electron mobility and m∗ the
electron effective mass. Since the channels have different mobilities, this shift is
different for the spin-up and spin-down Fermi surfaces as illustrated.

displaced Fermi

spheres

Electric Field

Brillouin zone

k = 0
+

∆k 

Fig. 1.1. The shift of the Fermi surface when an electric field is applied to a ferro-
magnet is shown. The solid circles represents the Fermi sphere of up and down spin
electrons in a field, the dashed circle represents the Fermi sphere in zero external field.

From Fig. 1.1, it is evident that the spin-up electrons are performing the
lion’s share of the electrical conducting, and, moreover, that if a current is passed
from such a spin-asymmetric material – for example cobalt – into a paramagnet
like silver (where there is no asymmetry between spin channels [6]), there is a
net influx into the silver of up-spins over down-spins. Thus a surplus of up-spins
appears in the silver and with it a small associated magnetic moment per volume.
This surplus is known as a “spin accumulation”. Evidently, for constant current
flow, the spin accumulation cannot increase indefinitely; this is because as fast
as the spins are injected into the silver across the cobalt-silver interface, they are
converted into down-spins by the slow spin-flip processes which we have hitherto
ignored. This spin-flipping goes on throughout all parts of the silver which have
been invaded by the spin accumulation. So now we have a dynamic equilibrium
between influx of up-spins and their death by spin-flipping. This in turn defines a
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characteristic lengthscale which describes how far the spin accumulation extends
into the silver.

Incidentally, to establish the concept of spin accumulation, we have assumed
that both spin-up and spin-down electrons were present in the ferromagnet in
equal numbers but that their mobilities are different. The same result could
have been achieved by assuming a half-metallic ferromagnet in which one spin
channel is entirely absent and no assumption need be made about the mobility
of its spins. In other words, we can produce a spin accumulation as a direct
consequence of an asymmetric density of states or as an indirect consequence
via asymmetry in electron mobility.

1.2.3 Spin Diffusion Length

It follows from the above discussion that the spin accumulation decays exponen-
tially away from the interface on a lengthscale called the “spin diffusion length”.
It is instructive to do a rough “back of the envelope” calculation to see how large
is this spin diffusion length, λsd, and on what parameters it depends. The esti-
mate proceeds as follows. Consider a newly injected up-spin arriving across the
interface into the nonmagnetic material. It undergoes a number N of momentum-
changing collisions before being flipped (on average after time τ↑↓). The average
distance between momentum scattering collisions is λ, the mean free path. We
can now make two relations. By analogy with the progress of a drunken sailor
leaving a bar and executing a random walk up and down the street, we can say
(remembering to include a factor of 3 since, unlike the sailor, our spin can move
in 3 dimensions) that the average distance which the spin penetrates into the
nonmagnetic material (perpendicular to the interface) is λ

√
N/3. This distance

is λsd, the spin diffusion length which we wish to estimate. Moreover, the total
distance walked by the spin is Nλ which in turn equals its velocity (the Fermi
velocity, vF) times the spin-flip time τ↑↓. Eliminating the number N of collisions
gives

λsd =

√
λvFτ↑↓

3
(1.2)

1.2.4 The Role of Impurities in Spin Electronics

This relation is interesting because it highlights the critical importance of im-
purity concentration in determining spin diffusion length. If the impurity levels
are increased in the silver, not only does the spin diffusion length drop because
of the shortened mean free path, it also drops because the impurities reduce the
spin-flip time by introducing more spin-orbit scattering [7].

1.2.5 How Long is the Spin Diffusion Length?

The relation also allows us to estimate values for the size of the spin diffusion
length. Again taking silver as an example, the spin diffusion length can vary be-
tween microns for very pure silver to of order 10 nm for silver with 1% gold impu-
rity. Yang etc. [8,9,10,11] have made elegant measurements of this parameter in
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other materials. For a mathematically rigorous analysis of the spin-accumulation
in terms of the respective electrochemical potential of the spin channels, the
reader is referred to Valet and Fert [12] from which it can be seen, numerical
factors apart, that the crude “drunken sailor” model gives a remarkably accurate
insight into the physics of this problem.

1.2.6 How Large is a Typical Spin Accumulation?

It is also of interest to estimate how large is the spin accumulation for typical
current densities. The calculation is done by balancing the net spin injection
across the interface:

dn

dt
=

Aαj

e
(1.3)

with the total decay rate of spins due to spin flipping in the entire volume
influenced by the spin accumulation:

A

τ↑↓

∫ ∞

0
ndx =

n0A

τ↑↓

∫ ∞

0
exp

(−x

λsd

)
dx =

An0λsd

τ↑↓
(1.4)

A is sectional area, j is current density, n is number density of excess spins, x
is distance from the interface, α is ferromagnet spin polarization. This in turn
gives a spin accumulation just inside the interface of

n0 =
αjτ↑↓
eλsd

=
3αjλsd

evFλ
(1.5)

Putting in typical numbers of j = 1000 Amps/cm2, α = 1, vF = 106 m/s,
λ = 5 nm, λsd = 100 nm, gives n0 = 4 × 1022 m−3. Thus, given an electron
density of 3× 1028 m−3, it is seen that only one part in 106 of the electrons are
spin polarized. The significance of this will be discussed below. Incidentally the
magnetic field B associated with this spin accumulation is:

B = µ0M = µ0µBn0 (1.6)
= 10−6 × 10−24 × 1022 = 10nTesla!! (1.7)

This is experimentally very hard to detect, especially considering the magnetic
fields caused by the current which generates the spin accumulation in the first
place.

1.3 Two Terminal Spin Electronics

The next step in the Spin Electronic story is to make a simple device and this
is realized by making a sandwich in which the “bread” is two thin film layers of
ferromagnet and the “filling” is a thin film layer of paramagnetic metal (Fig. 1.2).
This is the simplest Spin Electronic device possible. It is a two-terminal passive
device which in some realizations is known as a “spin valve” and it passes muster
in the world of commerce as a Giant Magnetoresistive hard-disk read-head.
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Ferro FerroPara

Fig. 1.2. Passive two terminal spin electronic device.

Empirically, the device functions as follows [13]: The electrical resistance is
measured between the two terminals and an externally applied magnetic field
(supplied for example by the magnetic information bit on the hard disk whose
orientation it is required to read) is used to switch the relative magnetic orien-
tations of the ferromagnetic layers from parallel to antiparallel. It is observed
that the parallel magnetic moment configuration corresponds to a low electrical
resistance and the antiparallel state to a high resistance. Changes in electrical
resistance of order 100% are possible in quality devices, hence the term gi-
ant magnetoresistance, since by comparison with, for example, anisotropic
magnetoresistance in ferromagnets, the observed effects are about 2 orders of
magnitude bigger.

1.3.1 The Analogy with Polarized Light

There are a variety of different ways – of varying rigour – to consider the op-
eration of this spin valve structure. To keep things simple, let us analyse it by
analogy with the phenomenon of polarized light. In the limit in which the fer-
romagnets are half-metallic, the left hand magnetic element supplies a current
consisting of spin-up electrons only which produce a spin accumulation in the
central layer. If the physical thickness of the silver layer is comparable with or
smaller than the spin diffusion length, this spin accumulation reaches across to
the right hand magnetic layer which, on account of its being half-metallic, acts
as a spin filter, just as a piece of Polaroid spectacle lens acts as a polarized
light filter. The spin accumulation presents different densities of up and down
electrons to this spin filter which thus lets through different currents depending
on whether its magnetic orientation is parallel or antiparallel to the orientation
of the polariser (i.e. the first magnetic layer). The only difference with the case
of crossed optical polarisers is that in optics the extinction angle is 90 degrees.
In the spin electronic case it is 180 degrees [14].
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1.3.2 Spin Tunneling Processes [15,16,17,18]

If two metallic electrodes are separated by a thin layer of insulating material and
a voltage applied between them, a current may pass the insulator by quantum
mechanical tunneling of the current carriers. The tunnel current depends on the
bias applied, but also on the energy height and physical width of the barrier.
Insulators may be regarded as semiconductors in which the electronic bandgap
between the full valence and the next (empty) conduction band is so large that
population of the conduction band is laughably unlikely at the operating tem-
perature. The effective quantum mechanical barrier height (for small bias) is
thus the difference between the Fermi level of the metal and the bottom of the
insulator conduction band.

Moreover, it is established theoretically and experimentally that the spin of
the tunneling carriers is preserved in transit. An analogous structure to the spin
valve described above may be made by making the two metallic electrodes of half-
metallic ferromagnet (HMF) and separating them with a thin layer of insulator.
Now, if the magnetizations of the electrodes are opposite, no current may flow
across the junction since the electrons which might tunnel have no density of final
states on the far side to receive them. However if the electrode magnetizations
are parallel, tunneling current may flow as usual. We thus have a spin electronic
switch whose operation again mirrors that of a pair of crossed optical polarisers
and which may be switched on and off by application of external magnetic fields.
If the electrodes are not ideal HMFs, then the on/off conductance ratio is finite
and reflects the majority and minority density of states for the ferromagnet
concerned. Spin tunnel junctions as described depend for their operation only
on density of states and do not invoke carrier mobility. Moreover, unlike all-
metallic systems they have lower conductances per unit area of device and hence
larger signal voltages (of order millivolts or more) are realizable for practical
values of operating current. Moreover, the device characteristics such as the size
of the “on” resistance, current densities, operating voltages and total current
may be tuned by playing with the device cross-section, the barrier height and
the barrier width. As we shall see below, this is just one reason why they are
very promising candidates for the spin-injector stages of future Spin Electronic
devices. They are also the basis of the next generation of Tunnel MRAM, as
illustrated in Figs. 1.3 & 1.4.

1.3.3 The Dominance of the Fermi Surface

Following the estimate above of the size of a typical spin accumulation, it might
be asked how an effect which involves changes of order 100% in electrical trans-
port could derive from a phenomenon in which only one part in a million of
the spins are polarized. The answer is that it is yet another demonstration of
how the properties of metallic systems are controlled exclusively by the mafia of
electrons at or very near the Fermi surface whose bandstructure properties the
metal reflects. The spin polarized electrons may be few in number but they are
injected at the point in the bandstructure which counts – and with devastating
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Fig. 1.3. A 10×10 matrix with the memory elements 0.1 microns in size. One of the
project goal of the European funded framework 5 network NANOMEM (courtesy of
M. Hehn, Université Henri Poincaré, Nancy, France).

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 1.4. Currently state of the art MRAMs use: (a) semiconductor diodes to prevent
current shortcuts. Shown in (b) MIM diodes and (c) TTRAMs with selective polar-
isation are being developed to replace the semiconductor diodes and prevent current
shortcuts. With (d), (e) & (f) the respective MRAMs in array form (courtesy of M.
Hehn, Université Henri Poincaré, Nancy, France).

results. There is a useful lesson here for later design work: always make sure your
spin polarization is injected at the right part of the energy bandstructure.
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1.3.4 CIP and CPP GMR [19]

In fact there are two configurations in which our simple two terminal device
can work – they are respectively described as current in plane (CIP) and cur-
rent perpendicular to plane (CPP). Above, we have discussed only the latter in
which the critical lengthscale for the magnetic phenomena is the spin diffusion
length. The physics involved in CIP operation is rather different and the critical
lengthscale here is the mean free path. However we shall leave the discussion
of this case since it is not central to the theme of this chapter. The reader is
referred to G. Mathon’s chapter for further details.

1.4 Three Terminal Spin Electronics

Electronically, the natural progression is from this two terminal device to a three
terminal one, and this step was made by Mark Johnson [20,21,22] who achieved
it simply by introducing a third contact to the intermediate paramagnetic base
layer to create the Johnson Transistor (Fig. 1.5). Now in the language of bipolar
transistors, we can speak of a base, an emitter, and a collector, the last two being

Ferro Ferro

VPump

1 3

2

Fig. 1.5. Johnson transistor.

the ferromagnetic layers. Just like its bipolar counterpart, the Johnson transistor
may be used in various configurations; the one we discuss here is chosen because
it gives insight into yet another way to analyse spin filtering and spin accumula-
tion. We leave the collector floating and monitor the potential at which it floats
using a high impedance voltmeter. Meanwhile a current is pumped round the
emitter-base circuit and this causes a spin accumulation in the base layer as
before. The potential at which the collector floats now depends on whether its
magnetic moment is parallel or antiparallel to the magnetization of the polarizing
emitter electrode which causes the spin accumulation. Evidently this potential
may be altered by using an external magnetic field to switch the relative orienta-
tion of the emitter and collector magnetic moments. To analyse this behaviour,
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consider again the limiting case of a half-metallic ferromagnet as the collector
electrode. It floats in equilibrium with the base electrode – in other words in
the steady state, no net current flows. But because it is half metallic it can only
trade electrons with the base whose spin is (say) parallel to its magnetization
and the “no current” condition then means that its electrochemical potential is
equal to the electrochemical potential in the base layer for the same electron
spin type. In other words, the collector is sampling the electrochemical potential
of the appropriate spin type (spin-up) in the base. Reversing the collector mag-
netization means it now samples the spin-down electrochemical potential in the
base. Since there is a spin accumulation in the base, these spin-up and spin-down
electrochemical potentials are different (see [12]) and the collector potential is
thus dependent on the orientation of its magnetic moment. Thus we have a three
terminal Spin Electronic device for which the conditions at terminal 3 may be
set by suitable adjustment of the conditions at terminals 1 and 2, as for a tra-
ditional electronic three terminal device. However, in addition, these conditions
are also switchable by applying an external magnetic field. This encapsulates
the essence of Spin Electronic device behaviour.

1.5 Mesomagnetism

Evidently in the above discussion, it is essential that the spin accumulation
penetrates right across the thickness of the base layer in order that the collector
may sample it. Likewise, in the two terminal device, it was important that the
base layer thickness was small on the lengthscale of the spin diffusion length.
This provides us with an interesting new way to view spin electronic devices. We
can regard their behaviour as a write-read process in which an encoder writes
spin information onto the itinerant electrons in one part of the device and this
information is then conveyed to a physically different part of the device where
it is read off by a decoder. The encoder and decoder elements are nanoscale
ferromagnets and the spin information decays in transit on the lengthscale of
the spin diffusion length. The message then is that for successful Spin Electronic
device operation, the device must be physically engineered on this length
scale or smaller.

This is just one particular manifestation of the general phenomenon of Me-
somagnetism which concerns itself with the appearance of novel physical phe-
nomena when magnetic systems are reduced to the nanoscale. The underlying
tenet of Mesomagnetism is that magnetic processes are characterized by a vari-
ety of lengthscales and that when the physical dimensions of a magnetic system
are engineered to dimensions comparable with or smaller than these character-
istic lengths, new and unusual magnetic phenomena appear – such as Giant
Magnetoresistance, Superparamagnetism, perpendicular recording media. These
characteristic lengthscales have various origins. Many of them – domain size, do-
main wall width, exchange length, thin film perpendicular anisotropy threshold
– are governed by a balance of energy terms. Others are the result of diffusion
processes for energy, momentum, magnetization.
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1.5.1 Giant Thermal Magnetoresistance

Magnetic Field (T)
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(a)

(b)

Fig. 1.6. Schematic set-up for measurement of the giant thermal magnetoresistance in
a GMR mechanical alloy shown in (a). With the thermal GMR effect in a mechanical
alloy shown in (b). For comparision the electrical GMR is also shown inverted and
superimposed on the lower trace, with the axes arbitary.

As an interesting aside, the Wiedemann Franz Law (WFL) tells us that there
is a close relationship between electrical transport and heat transport in most
materials. Thermal and electrical conductivities are limited in most regimes by
the same scattering processes and the WFL tells us that in these circumstances
their quotient is a constant times absolute temperature. Moreover, this close
relationship extends to magnetotransport in mesomagnetic systems. Figure 1.6
shows measurement of the Giant Thermal Magnetoresistance in a giant magne-
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toresistive mechanical alloy. The analysis is identical to the electrical case. Spin
information is encoded onto a thermal current in one part of the device and read
off again in a different part of the device: the result is a thermal resistance which
varies with applied magnetic field by many percent [23].

1.5.2 The Domain Wall in Spin Electronics

Another example of the intrigue of Mesomagnetism may be seen by considering
the geometrical similarity between a spin-valve structure and a ferromagnetic
domain wall as illustrated in Fig. 1.7. In both cases, regions of differential

Maj Maj
Min Min

MajMaj
Min Min

(a)

(b)

Fig. 1.7. Geometric similarities of (a) FM domain wall and (b) a GMR trilayer.

magnetization are separated by an intermediate zone which takes the form of
a thin film of nonmagnetic metal and a region of twisted magnetization in the
respective cases. The spin valve functions provided that spin conservation occurs
across the intermediate zone. This suggests a model of domain wall resistance
[24,25,26] in which the value of the resistance is determined by the degree of
spin depolarization in the twisted magnetic structure which forms the heart of
the domain wall. The model invokes magnetic resonance in the ferromagnetic
exchange field to determine the degree of electron spin mistracking on passing
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Fig. 1.8. The spin trajectory is shown for the electrical carriers in transit through
domain walls in Co (typically Co wall thickness ∼ 15 nm).

through the domain wall. This mistracking of, say, an up-spin leads to its making
an average angle θ with the local magnetization direction in the domain wall and
this corresponds to its wavefunction being contaminated by a fraction sin(θ/2)
of the down-spin wavefunction. It is then susceptible to additional scattering by
an amount equivalent to 〈sin2(θ/2)〉 multiplied by the down-spin scattering rate.
This model leads to (1.8), an expression for the spin-dependent contribution to
domain wall resistivity (shown in Fig. 1.8):

δρw

ρ0
=
(

λ∗

λ
+

λ

λ∗ − 2
)

〈sin2(θ/2)〉 (1.8)

where λ and λ∗ are the majority and minority spin mean free paths, ρ0 and δρw

are respectively the bulk ferromagnetic resistivity and the resistivity increase for
domain wall material.

This spin-dependent contribution differs from the contributions from the
many possible mechanisms for domain wall resistance in that it predicts not
a fixed value of resistance for the wall but rather a ratio increase based on the
bulk value for the material. In principle therefore the validity of the model may
be tested by measuring domain walls in increasingly impure samples of the same
ferromagnet and observing if the ratio δρw/ρ0 stays fixed. The model has been
re-analyzed [27] by replacing this simple rotating frame approach with a so-
phisticated quantum mechanical analysis: to within a simple numerical factor,
identical results are obtained.

1.6 Hybrid Spin Electronics

The Johnson transistor is a useful and versatile demonstrator device but it has
practical limitations. The voltage changes measured are small and it has no power
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gain without the addition of two extra electrodes and a transformer structure.
The underlying design problem with the device is that it is entirely Ohmic in
operation since all its constituent parts are metals.

Clearly another technology progression is needed and this is the introduction
of Hybrid Spin Electronics – the combination of conventional semiconductors
with spin-asymmetric conducting materials. At a stroke, this releases to the Spin
Electronic designer all the armoury of semiconductor physics such as exploiting
diffusion currents, depletion zones and the tunnel effect to create new high-
performance spin-devices.

1.6.1 The Monsma Transistor

The first Hybrid Spin Electronic device was the Monsma transistor [28,29,30]
produced by the university of Twente which was fabricated by sandwiching a
traditional spin valve device between two layers of silicon. Three electrical con-
tacts are made to the spin-valve base layer and to the respective silicon layers.
The spin valve is more sophisticated than that illustrated in Fig. 1.9a and com-
prises multiple magnetic/nonmagnetic bilayers, but its operating principle is the
same. Schottky barriers form at the interfaces between the silicon and the metal
structure and these absorb the bias voltages applied between pairs of terminals.
The collector Schottky barrier is back biased and the emitter Schottky is for-
ward biased. This has the effect of injecting (unpolarised) hot electrons from
the semiconductor emitter into the metallic base high above its Fermi energy.
The question now is whether the hot electrons can travel across the thickness of

Emitter CollectorBase

GMR
Multilayer

Si Si

e-

(a) (b)

x

Collector barrier

λ1

λ2n(x)

Fig. 1.9. Monsma transistor: first attempt to integrate ferromagnetic metals with sili-
con shown in (a). In (b) the average energy of both spin types plotted as a function of
distance. The thick line denotes scattering for both spin types in an antiferromagnet-
ically aligned mutilayer (both species experiences strong scattering) and the thin line
denotes the scattering when the layers are ferromagnetically aligned (only one species
will experiences strong scattering).
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the base and retain enough energy to surmount the collector Schottky barrier.
If not, they remain in the base and get swept out the base connection.

By varying the magnetic configuration of the base magnetic multilayer the
operator can determine how much energy the hot electrons lose in their pas-
sage across the base. If the magnetic layers are antiferromagnetically aligned
in the multilayer then both spin types experience heavy scattering in one or
other magnetic layer orientation, so the average energy of both spin types as a
function of distance into the base follows the thick line exponential decay curve
(λ1) of Fig. 1.9b. On the other hand, if the magnetic multilayer is in applied
field and its layers are all aligned, one spin class gets scattered heavily in every
magnetic layer, whereas the other class has a passport to travel through the
structure relatively unscathed and the average energy vs distance of this priv-
ileged class follows the thin curve (λ2). It may thus be seen that for parallel
magnetic alignment, spins with higher average energy impinge on the collector
barrier and the collected current is correspondingly higher. Once again we have
a transistor whose electrical characteristics are magnetically tunable. This time,
however, the current gain and the magnetic sensitivity are sufficiently large that,
with help from some conventional electronics, this is a candidate for a practical
working device.

It may be seen from comparison of the two traces of Fig. 1.9b that there is a
trade-off to be made in determining the optimum base thickness. A thin base al-
lows a large collector current harvest but affords little magnetic discrimination. A
thick base on the other hand means a large factor between the collector currents
corresponding to the two magnetic states of the multilayer but an abysmally
small current gain. (The low current gain has always been the Achilles Heel of
metal base transistors, and is probably the main reason for their fall from grace
as practical devices despite their good high frequency performance owing to the
absence of base charge storage.)

An interesting feature of the Monsma transistor is that the transmission se-
lection at the collector barrier is done on the basis of energy. Thus the scattering
processes in the base which determine collected current are the inelastic ones.
Elastic collisions which change momentum but not energy are of less significance.
This contrasts with the functioning of a spin valve type system in which all mo-
mentum changing collision processes have the same status in determining device
performance [31].

1.6.2 Spin Transport in Semiconductors

The Monsma transistor represents a very important step in the evolution of
Spin Electronics. It is the first combination of spin-selective materials with a
semiconductor. However, as yet, the semiconductor is used only to generate
barriers and shield the spin-dependent part of the device from electric fields. To
release the full potential of Hybrid Spin Electronics we need to make devices
which exploit spin-dependent transport in the semiconductor itself.
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1.6.3 The SPICE Transistor [32,33]

The current gain of a conventional bipolar transistor is in part due to the screen-
ing action of the junctions either side of the base which absorb the bias voltages
and leave the base region relatively free of electric fields. The current which
diffuses across the base is primarily driven by a carrier concentration gradient
and to a rather lesser extent by electric field and the randomness associated with
concentration driven current flow helps to improve the current gain. The carriers
injected by the emitter are forced to wander towards the base along the top of
an extended cliff in voltage, at the bottom of which lies the collector. Of order,
say, 99% of the carriers stumble over the cliff and are swept out the collector and
the remaining 1% make it to the base connection; this gives a very satisfactory
current gain β = IC/IB of 99.

Implementing spin polarized current transport in a semiconductor enables a
new concept in Spin Transistor design – the Spin Polarised Injection Current
Emitter device (SPICE) in which the emitter launches a spin polarized current
into the electric field screened region and a spin-selective guard-rail along the
top of the cliff determines if these polarized carriers are allowed to fall into the
collector or not. Thus we have a device with a respectable current gain from
which power-gain may easily be derived, but whose characteristics may again
be switched by manipulating the magnetic guard rail via an externally applied
magnetic field. A wide variety of designs are possible which answer to this general
principle. For example the emitter and collector interfaces may be realized by
p-n junctions, Schottky barriers or spin tunnel junctions and the geometry of the
device may be adjusted to allow a greater or lesser degree of electric field driving
component to the diffusion current in the base depending on the application.

1.6.4 Measuring Spin Decoherence in Semiconductors

The crucial question which needs to be answered in order to realize this kind of
Spin Transistor is whether spin transport is possible at all in semiconductors,
and, if so, whether it is possible over the sort of physical dimensions on which
a typical transistor is built. In other words, we need an estimate of the spin
diffusion length in a typical semiconductor. A subsidiary question concerns the
role of dopants in the semiconductor and whether they introduce spin-orbit
scattering which militates against the spin transport by reducing the spin flip
times.

An immediate way to address this question is to directly spin-inject into a
semiconductor [34,35] and observe the polarization of the current which emerges
on the other side. Figure 1.10 shows an experiment in which this was performed.
Doped channels of silicon with various dopant types and concentrations and of
different lengths (from 1 to 64 microns) were contacted at each end with dif-
ferentially magnetisable cobalt pads of well defined magnetizing behaviour. The
transport results shown in Fig. 1.10b are insensitive to magnetic field direction,
have even symmetry (thereby eliminating AMR and Hall effect as a possible
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Fig. 1.10. Experiment performed to directly spin-inject into a semiconductor and ob-
serve the polarization of the current which emerges on the other side is shown in (a).
The resulting transport measurements (b) suggests that the spin diffusion length in sil-
icon is at least many tens of microns, but the spin injection process at the metal/silicon
interface is highly inefficient.

cause) and they are compatible with the observed domain magnetization pro-
cesses for the cobalt pads. They appear to correspond to spin transport through
the semiconductor, and as such they correlate well with earlier experiments us-
ing nickel injectors [34]. Interestingly however the spin transport effects are of
order a few percent at best, yet the effect decays only very slightly with silicon
channel length and was still well observable for 64 micron channels. The message
would seem to be that the spin diffusion length in silicon is many tens of microns
at the least, but that the spin injection process at the metal/silicon interface is
highly inefficient. This direct injection inefficiency is being widely observed and
its cause is still hotly debated. It may arise from spin depolarization by surface
states [36], or it may be explainable by the Valet/Fert model in which spin injec-
tion is less efficient for materials of very different conductivities [37]. It may also
be because the spin injection is not being implemented at the optimum point
in the semiconductor bandstructure. From the latter point of view, spin tunnel
injection into semiconductors is a more versatile technique, since, for a given
injected tunnel-current density, the necessary bias (and hence the point in the
band-structure where injection occurs) may be tuned by varying the thickness
and/or the tunnel barrier height.
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A very beautiful direct measurement of semiconductor spin diffusion length
has been made by decoupling from the spin injection problem [38,39] and gen-
erating the spin polarized carriers in the semiconductor itself (see Fig. 1.11).
Gallium Arsenide [40,41] was used as the host which has the property that,

(a)

(c)(b)

Fig. 1.11. Lateral drag of spin coherence in Gallium Arsenide has been measured
by Faraday rotation as shown in (a). A new spin population is created every time a
pump pulse hits the sample as shown in (b). The electrons in each new population
then drift along the electric field. When observed at some time after injection, each
population will have drifted an amount proportional to its age as well as experienced
an exponential decay in its Faraday signal. A number of field scans can be taken over
a range of displacements in order to identify the spatial extent of each spin population
and track its movement in time, as shown in (c). Spin transport can be observed at
distances exceeding 100 microns (after [39]).

when pumped with circularly polarized light, the selection rules are such as to
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populate the conduction band with predominantly one spin type. These spins
can be made to precess by application of a small magnetic field. The resulting
precessing magnetization is then detected using optical Faraday rotation using
a probe beam from the same optics as provides the pump. The magnetization
drifts under the application of a driving electric field and the spatial decay in
precession signal gives a measure of the spin diffusion length. The results are of
order many tens of microns, in accordance with the silicon measurements of the
direct injection experiment discussed above. See Chap. 17 for further details.

Thus it would seem beyond doubt that the spin diffusion length in semi-
conductors is adequate for the design and realization of SPICE type transistor
structures – provided that means are provided for efficient delivery of the initial
spin polarized current.

1.6.5 How to Improve Direct Spin-Injection Efficiency

With this problem in mind it is interesting to examine the results of an ex-
periment which injects spin polarized carriers from a magnetic semiconductor
into a normal semiconductor light emitting diode structure [42,43,44,45,46] (see
Fig. 1.12). The polarization of the injected carriers is dependent on the mag-
netization direction of the magnetic semiconductor which supplies them. This
is reflected in the polarization of the light emitted by the LED – its polarisa-
tion is related to the spin of the electrons which cause it via the same selection
rules as discussed above in the Awschalom experiment. The polarization of the
light emitted correlates well with the hysteresis loop for the magnetic semicon-
ductor and decays with temperature as the magnetic moment of the magnetic
semiconductor, leaving little doubt that spin injection has been achieved. The
percentage injection realised here is more favourable than has been possible by
direct injection from metals and it may be that magnetic semiconductors have an
important role to play in future Spin Electronics development, notwithstanding
the non-negligible material problems which they pose.

Otherwise, experiments suggest that spin-tunnel injection into semiconduc-
tors is a promising technique which offers higher injection efficiency than direct
spin-injection. Further results in this area are imminent.

1.6.6 Novel Spin Transistor Geometries – Materials and
Construction Challenges

The various Spin Transistors designed along the SPICE principle all require
ferromagnetic polariser and analyzer stages each side of the semiconductor as-
semblies. For contamination reasons the magnetic fabrication must be performed
only after the semiconductor processing is complete. The materials must be com-
patible, the process must allow high quality tunnel junctions to be implemented,
the nanomagnetic elements must be differentially magnetisable, the physical di-
mensions must satisfy spin diffusion length requirements and the fabrication
must comprise a lithographic stage which defines the three distinct electrodes,
all with a minimum of process steps.
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(a)

(c)

(b)

Fig. 1.12. Electrical spin injection into an epitaxially grown ferromagnetic semicon-
ductor shown in (a). In (b) the total photoluminescence intensity of the device. In
(c) the presence of hysteretic polarization observed in magnetic samples with d = 20–
220 nm, and its absence in the control samples, indicates that hole spins can be injected
and transported over 200 nm (after [44]).

Faced with these challenges, the author and his colleagues in York, Strasbourg
and Southampton have found the configuration illustrated in Figs. 1.13 & 1.14
most satisfactory for making this type of device. The basis of the structure is a
silicon-on-insulator (SOI) wafer into the base of which is etched a micron sized
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pit with relieved sides. The spin polarized injection emitter is built into the pit
and the base and collector structures are deposited and etched on the device
quality silicon side.
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Fig. 1.13. Shown in (a) the magnetic hysteresis of the transistor before the base and
collector were defined. Note that magnetization of the top and bottom magnetic layers
switch at different fields. In (b) the electrical characteristics of the transistor and (c) a
schematic diagram of the device with the spin injector emitter built into the pits and
the base and collector structures fabricated on the quality silicon side (courtesy of C.
Tiusan, IPCMS, Strasbourg, France).

1.7 The Rashba Effect and the Spin FET [47,48]

The Lorentz transform applied to electromagnetism shows that to a relativistic
traveller, a stationary electric field looks partially magnetic. Since charge carrier
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Fig. 1.14. Spin polarised injector emitter transistor.

velocities in devices are of order 106 m/s or larger, relativistic considerations
apply, and electrons in the channel of a field effect transistor see the gate-imposed
electric field as having a magnetic component. Depending on orientation this field
may be diagonal or off-diagonal and accordingly it causes either band splitting
or precession. This is known as the Rashba effect. It follows that if the channel
current in the FET is spin polarized, the spins will interact differently with the
electrically imposed gate signal depending on whether they are spin-up or spin-
down. This is the principle of the Spin FET and although the device has not
yet escaped from the drawing board, some of the essential building blocks have
been established [49,50].

1.8 Refinements in the Understanding of Spin Tunneling

An outline of the principles of spin tunneling was given earlier in this chapter.
In practice this simple analysis of the physics of spin tunneling is unable to
explain the experimental details observed. The simple theory predicts that a
particular ferromagnet will always exhibit the same polarization (i.e. that the
ratio of majority to minority density of states is always the same). In practice the
polarization of some ferromagnets not only varies in magnitude when different
tunnel barrier material are used but they are even known to change sign [51]! The
explanation of this riddle is thought to be due to the fact that the tunnel current
emerges from the thin layer of metallic electrode right next to the barrier and
this material has a bandstructure unlike the bulk metal owing to hybridisation
with the insulating material. It follows that, for spin tunneling processes, it
is inappropriate to attempt to assign a given spin polarization to a particular
spin-asymmetric electrode material: rather it is proper to assign polarizations to
combinations of metal ferromagnets and insulator materials [52].
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1.9 Methods for Measuring Spin Asymmetry

With the caveat, particularly for spin tunneling, that the concept of degree of
spin polarisation is more appropriate to combinations of materials, it is inter-
esting to establish the expected polarization which a particular material might
offer in a device. Several methods exist and include spin-polarised photoemission
spectroscopy [53] and Andreev reflection [54] in which the transport properties
are examined of an interface between a superconductor and point-contact of the
spin-asymmetric material. Another technique involves characterisation of tun-
neling currents from an electrode of the material under investigation to a known
electrode/insulator combination [51].

A fourth technique [55] is to analyse the magnetic variation in Schottky
characteristics of a barrier formed between the ferromagnetic conductor under
analysis and a semiconductor. The Schottky current varies as:

I = I0 exp (µBB [ρ↑ − ρ↓/ρ↑ + ρ↓] /kBT ) (exp [eV/kBT ]− 1) (1.9)

where V is the bias voltage, B is applied magnetic field and [ρ↑ − ρ↓/ρ↑ + ρ↓]
is the required spin asymmetry which may therefore be extracted by observing
the modifications to the Schottky characteristic in a magnetic field.

1.10 FSETs

The electrostatic energy of a charged capacitor is 1
2Q2/C. If C is sufficiently

small, this energy can compete with thermal quanta of size kBT , even for Q = e,
the electronic charge. Small metallic spheres or pads with physical dimensions in
the nanometer range have capacitances in the right ballpark for this condition
to obtain [56]. If such a metallic island is sandwiched between two physically
close metallic electrodes (the source and the drain), we have a Single Electron
Transistor (SET) [57,58,59] through which current may be made to pass one
electron at a time (or in bunches of electrons depending on biasing conditions).
A third electrode (the gate) which is capacitatively coupled to the metallic island
is pulsed in order to trigger the passage of each charge packet (see Fig. 1.15). The
physics involved is a competition between three energy terms; the electrostatic
energy, Ei, of the island due to the presence on it of just one electron, the
thermal quantum kBT , and the energy eVb gained by an electron in falling
through the bias voltage Vb. The first electron which arrives on the island from
the source electrode charges it to a potential e/C which, since it is larger than
Vb, is sufficient to prevent any further electrons hopping to the island until the
first electron has left via the drain electrode. The charges are encouraged to jump
from the island to the drain (and hence make room for more charges to arrive
from the source) by negative-going pulses on the gate electrode. If the thermal
quantum size is arranged to be small compared with the electrostatic energies
in play, random thermal interference with the current control is reduced.

There is a fourth energy term which we can now introduce into the problem,
namely the electrochemical potential difference for spin-up and spin-down elec-
trons associated with a spin accumulation. In practice this is achieved by making
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Fig. 1.15. Shown in (a) is a schematic digram of a FSET and (b) a micrograph of a
FSET (courtesy of I. Petej, Clarendon Laboratory, Oxford).

the electrodes and/or the island from ferromagnetic material [60,61,62,63]. A fer-
romagnetic source electrode will in principle produce a spin accumulation on a
nonmagnetic island and, under certain bias conditions, the associated electro-
chemical potential holds the balance of power between the main energy terms
and hence has a large degree of control over the current flow to the ferromagnetic
drain. Other configurations are possible in which the island also is magnetic. Fert
and Barnas have made extensive calculations for various temperature regimes
of the various possible modes of behaviour of such devices which are called
Ferromagnetic Single Electron Transistors (FSETs) or Spin SETs. They are of
particular interest to the experimental development of quantum computing since
they offer a nice opportunity for the manipulation of spatially localized qubits
as discussed later.
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1.10.1 Spin Blockade

Another interesting possibility which arises also if the magnetic island is itself
a ferromagnet is that of a spin-blockaded system in which electrical transport
across the device is switched by magnetizing the island [64]. An example of
a Schottky barrier at low temperature which has been spin blockaded in this
fashion is shown in Fig. 1.16 [65]. The MR effect is as large as 25% at 20 K which
is unprecedented in a silicon device (shown in Fig. 1.17). The bandstructure
consists of the Schottky barrier on the edge of which have been placed a series of
magnetic islands which are antiferromagnetically coupled (and hence blockaded)
in zero applied magnetic field. Applying a field orients these superparamagnetic
particles and the resistance of the structure decreases owing to a tunnel-hopping
current between adjacent islands. Exposure to light increases the resistance of the
structure owing to photon-promotion of electrons from the islands to the large
density of adjacent surface states. The geometry of this system is not unlike that
of a High Electron Mobility Transistor (HEMT) in which the performance of the
main current channel is controlled by localized states in a physically distinct but
nearby region of the device.

20nm
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Fig. 1.16. Proposed model for the Spin Blockaded Schottky Barrier device [65].



1 Introduction to Spin Electronics 27

(a) (b)
-20 -15 -10 -5 0 5 10 15 20

540

550

560

570

580

590

600
R

 (
kO

hm
)

H (KOe)

4K 20K

-20 -15 -10 -5 0 5 10 15 20

650

700

750

800

850

900

R
 (

kO
hm

)

H (kOe)

Fig. 1.17. Spin Blockaded Schottky Barrier magnetoresistance at (a) 4 K and (b) 20 K.
The MR effect is as large as 25% at 20 K which is unprecedented in a silicon device.

1.11 Unusual Ventures in Spin Electronics.

Just as conventional electronics insinuates itself into all walks of life, so Spin
Electronics shows the same invasive tendency. Even the carbon nanotube has
not escaped [66]. Figure 1.18 shows the spin-valve effect observed from a cobalt
contacted nanotube, from which it is deduced that the spin diffusion length in
such nanotubes is a surprisingly large 130 nm. This would seem to promise well
for future device applications of such materials.

(a) (b)
Fig. 1.18. Are carbon nanotubes the future of spin electronics? In (a) Micrograph of
a Co-contacted 40 nm diameter carbon nanotube and (b) A nanotube has a spin-flip
scattering length of at least 130 nm (after [66]).
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1.12 The Future of Spin Electronics.

Outside the realms of Politics and Economics it is most foolhardy to predict the
future of anything. Who would have thought that, after a mere decade of exis-
tence (starting for real in 1988), Spin Electronics would underpin a major indus-
try like hard-disk read technology. It seems clear that its next conquest is likely
to be to carve itself a large niche in the MRAM industry using existing tunnel
junction technology and perhaps eventually refinements of the spin-tunnel tran-
sistors discussed above. Ultimately it may spawn a new philosophy in computer
memory in which the distinction between storage memory and active memory
becomes less defined.

On an equally speculative note, it would seem that Spin Electronics has a
bright potential future in the world of Quantum Information Technology [69].

The simple Spin Electronic devices which have been demonstrated to date –
such as GMR devices and the various spin transistors – function by coding spin
information onto the electrical carriers in one part of the device and reading
it back in another remote region of the device. In short, contemporary Spin
Electronics functions by transfer of streams of single qubits from one part of the
Spin Electronic circuit to another. Viewed thus, this is just the simplest possible
type of quantum information transfer in which no entanglement is involved.
The next stage in Spin Electronics is to implement devices which function by
displacing spin information by means of entangled qubit pairs. So for example,
multi-terminal spin devices of the future might be envisaged in which streams of
entangled qubits enable communication between different device terminal, each
of which receives one qubit component of the entangled ensemble. The practical
realization of such a device might be attempted by employing combinations of
Spin SETs.

The FSET (or Spin SET) is a particularly important stepping-stone on the
path to quantum information processing. Its distinguishing feature is that it is
a unique example of a quantum processor in which the qubits (i.e. the spins)
may be physically displaced, allowing the gates and their implementation hard-
ware to be spatially localized as in conventional computing. Competing quantum
processor hardware, such as nuclear magnetic resonance processors have fixed
qubits and peripatetic gates. Coupled with this configurational advantage, the
Spin SET is also endowed with an automatic electrical facility for measuring and
collapsing the qubit. These two attributes alone position it in the forefront of
potential candidates for future quantum information processing hardware.

While the realization of a full-blown quantum computer is a long way into the
future, owing to the monumental problems of overcoming uncontrolled quantum
decoherence and parasitic interactions of qubits, nonetheless, the more mod-
est aim of implementing demonstrators of basic quantum information process-
ing hardware is feasible in the medium term. Particularly intriguing would be
to explore their use in quantum dense coding, in which fractions of entangled
qubits are used to carry increased information capacity compared to classical
bit-streams. This might be achieved by using pairs of Spin SETs, each of which
is fed entangled qubit spins by a central generator, and each of which is equipped
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with gate hardware capable of executing the basic single qubit operators X ,Y,
Z, H and P(θ), which are used to decode the entangled dual spin states. In the
simplest case, the gates might consist simply of ferromagnetic layer sandwich
structures with differing anisotropy axes in combination with ultra-fast switch-
ing microwave pulsing.

A rather simpler task, which could be investigated to gain insight into the
functioning of this hardware is the matter of transmitting quantum encrypted
data. This has been achieved experimentally using polarized light (see for exam-
ple [67,68]) but never with localized qubits. The problem is one of transmitting
single qubits with one of two orthogonal quantisation axes and projecting them
on arrival onto similar axes. Interception of the data may then be detected
by monitoring the bitstream error rate which must remain lower than 25% for
guaranteed secure transmission. This is a configuration which lends itself to im-
plementation by assemblies of three connected Spin SETs.

The main obstacles in Quantum Information Processing are unsolicited in-
teraction, quantum decoherence and data corruption by noise. A key element in
any successful programme will be to reduce these effects to a working minimum
necessary to demonstrate functioning of such primitive quantum hardware as
has been outlined above. In particular, ways need to be developed to introduce
Quantum Error Correction and spin regeneration by methods which do not seek
to violate the “no-qubit cloning rule”.
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2 An Introduction to the Theory
of Normal and Ferromagnetic Metals

G. A. Gehring

Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH,
United Kingdom

2.1 Introduction

The proper understanding of spin electronics in metallic systems relies on an
understanding of some basic metal physics. The material presented here is very
brief and is covered in more detail in several excellent textbooks [1,2]. The discus-
sion starts with the definition of a metal and the justification for the frequently
used independent particle model even when the interactions between the elec-
trons are included. The role of impurities is also discussed and localized and
extended states are defined. Because we are concerned with magnetic properties
the most relevant perturbation will be that of a periodic magnetic field. This is
characterized by the generalized susceptibility, which is a very useful concept as
it allows us to consider the instability of a metal to ferromagnetism or to spin-
density waves as well as the response of a paramagnetic metal to a magnetic
impurity. Finally we consider strong coupling theory. This includes a discussion
of the formation of local moments in a metal. Such a moment will be coupled to
the conduction electrons and may be screened out by the Kondo effect. A dense
array of Kondo type impurities will form a heavy Fermion compound, which is
also described briefly. Alternatively, a dense array of such moments can interact
with each other to form a spin glass or a ferromagnet.

2.2 What is a Metal ?

In this introduction we summarize the important ingredients for a material to
behave like a metal.

2.2.1 Definition of the Fermi Energy

Many of the effects which are important depend on the metallic Fermi surface.
Let us review the theory, which allows a Fermi surface to be defined. A Fermi
energy exists for any system with a large number of electrons. The chemical
potential, µ, is defined by the condition that the total occupation of all available
states is equal to the number of electrons, N . Here the density of states is written
as a function of the energy ε as D(ε) and the temperature β = 1/kT :

N =
∫ ∞

0
dεD(ε)

1
exp[β(ε− µ)] + 1

(2.1)

M.J. Thornton and M. Ziese (Eds.): LNP 569, pp. 35–51, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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The Fermi energy is given as the limit of the chemical potential as the temper-
ature goes to zero and is equal to the energy of the highest energy state which
can be occupied.

N =
∫ εF

0
dεD(ε) (2.2)

In a metal D(εF) �= 0. But there is more than that: the states at εF must be
extended. As we discuss later this means that the electrons may not be interacting
too strongly with each other, or lattice vibrations or defects.

We start from a model in which the electrons move independently in a per-
fectly periodic potential. Such theories form a good starting point for simple
metals. This is known as the independent particle model. Consider the elec-
trons, which are in the last incomplete shell in a perfect crystal – each unit cell
contains the same ion core and electron wave functions. In an eigenstate, the
electron density must be the same in all unit cells. This symmetry requires that
the wave function of the ‘extra’ electrons will be of the following form

Ψn
k (r, t) = un

k(r) exp(ik · r − iεt/�) where un
k(r + Ri) = un

k(r) (2.3)

for each Bravais lattice vector Ri. The energy, ε, will depend on k and n, which
is the band index.

2.2.2 Electron Energy Bands in Metals

Calculated electron bands are shown in Fig. 2.1 for copper. In these calculations,
the individual electron’s energy includes the kinetic energy, the attractive po-
tential energy of the band electrons with the ion cores and an approximation to
the electron-electron interaction energy. This latter term is treated within the
Linear Density Functional Theory, which works very well for a metal like copper
such that the results of experimental measurements such as photoemission or de
Haas–van Alphen effect may be modelled accurately.

It is useful to also consider an approximation to Cu, which is known as tight
binding theory. In this approach one constructs bands that are linear combina-
tions of the five atomic d orbitals. As the orbitals have a rather small radius the
overlap of a d orbital on one site with another d orbital on one of its neighbours
will be relatively small and the bands will be narrow. The energies fall in two
groups at the Γ point because of the cubic crystal-field splitting of the states into
t2g and eg states and then disperse over the zone. There are bonding and anti-
bonding states at lower and higher energies, respectively. The calculated bands
for copper show clearly the five d bands hybridizing with the very wide band
which starts at an energy of ∼ −0.064 Ry at the Γ point and then re-emerges
above the d electrons at ∼ 0.5 Ry close to the edge of the Brillioun zone near
the X and L points. This pattern of the narrow hybridized d bands crossing the
conduction band is typical of a transition metal. Copper is special because the
Fermi energy is above the region where the hybridization occurs. The electrons
at the Fermi level are essentially pure conduction electrons with very little d
character.
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Fig. 2.1. (a) The energy bands plotted as a function of wave vector for Cu [3]. The
point labelled Γ is at the zone center and the other points are at high symmetry points
on the zone boundary. Γ − X corresponds to q ‖ [100] and Γ − L corresponds to
q ‖ [111]. (b) The density of states and the integrated density of states for Cu – the
integrated density of states is equal to 11 at the Fermi energy which is defined to be at
ε = 0. (This corresponds to the ten 3d and one 4s electron, which are present on the
free atom.)

Two electrons with opposite spins may occupy each k state in the Brillioun
zone. From the bands we may evaluate the density of states. This is done by
evaluating the energy bands over the entire Brillioun zone, which is covered by a
dense, regular mesh of k points each of which may be occupied by one electron
of each spin. The total number of states for each energy, the density of states
D(ε), is found by summing up over all k states. These are shown in Fig. 2.1b.

The five d bands contain a total of ten states, which are all occupied. The
last, 11th, electron is in the conduction band, which itself could hold a maximum
of two electrons. From the band energies we actually expect the density of states
at the Fermi surface to be low but there is a large density of states associated
with the d bands, which is some 2 eV below the Fermi level. This is confirmed in
Fig. 2.1b. Thus there will be strong optical absorption associated with removing
an electron from the d bands to just above the Fermi level – it is this which gives
copper its characteristic pink colour.

We see that although the figures for the full band structures look complicated
at first it is straightforward to see that they are formed from the hybridization
of the much wider band arising from the atomic 4s with the 3d bands. At many
points in the Brillioun zone it is possible to identify electron states as being
either predominantly d or s like. This is very useful when transport is discussed
in later chapters.

The difference between Cu and the transition metals such as Ni, Co and Fe
is that the Fermi level lies well above the d bands in Cu but crosses it for the
transition metals. This means that the density of states at the Fermi level in
the transition metals would be much higher – but we already know that these
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metals are also ferromagnetic, so the assumption that both spin bands are equally
occupied needs to be dropped. This is discussed in Sect. 2.3.

The Fermi energy was defined by (2.2). We define a Fermi temperature, TF
by TF = εF/kB. Since the value of TF is normally very high (∼ 50, 000 K), the
assumption of an absolutely sharp Fermi energy is still useful at finite temper-
atures. The condition that the band energies equal the Fermi energy defines
surfaces in k space:

εnk = εF . (2.4)

There is a surface in k space for each value of n, which separates the occupied
from the unoccupied states and plays a very important role in the development
of the theory. The electrons at, or above, the Fermi energy are free to move
to other states of higher energy or to be scattered elastically to states of equal
energy but different k value.

Strictly speaking the Fermi surface is only absolutely sharp at T = 0 but as
the characteristic temperature, the Fermi temperature TF is very big the result
has general validity for metals at all accessible temperatures.

We should ask why the electrons do not scatter off each other and so give a
broadening to the Fermi surface – this is described below.

2.2.3 Justification of the Independent Particle Model

It was shown by Landau many years ago that the electrons cannot scatter off
each other, since the Fermi statistics implies that there is no available phase
space. An excellent treatment is given in Nozières [4]; here we give a simplified
discussion.

  
 
                
 
 
 
 
 
 
 
 
 
         (a)                (b) 
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z 

Fig. 2.2. (a) One electron is excited outside the Fermi sea with total energy ε. (b) The
extra electron has scattered off an electron in the Fermi sea leaving a hole and both
electrons lie outside the Fermi sea. The energy and momentum of the configuration
shown in (b) must be equal to that in (a).

Consider an electron with an energy ε which is a little bit higher than εF at
T = 0. Figure 2.2 shows a section through the Fermi surface where the energy
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of a particle depends on its distance from the origin. Figure 2.2b shows an
allowed scattering state, which is accessible to the electron shown in Fig. 2.2a. In
any electron-electron scattering event the total energy and momentum must be
conserved. In this case the Pauli principle is putting very severe extra constraints
on the accessible final states.

When the electron scatters off one of the electrons inside the Fermi surface
the final two electrons must both end up in states which were previously empty.
This ensures that the density of final states is squeezed into a vanishingly thin
shell around εF and hence that the lifetime varies as τ(ε)−1 ∼ (ε − εF)2 → 0
[1,4]. This is very important because the broadening of a quantum state, δε, is
given by �τ−1 where � denotes Planck’s constant divided by 2π and hence the
Fermi energy remains perfectly defined. In a full version of Landau theory [4]
it is shown that the individual electron states considered here map on to quasi-
particles that have renormalized masses but also have no scattering at the Fermi
energy. Thus the scattering that needs to be considered at very low temperatures
comes from the defects and not from the electron-electron interactions.

2.2.4 Imperfect Crystals

Any defect causes scattering and hence gives a breakdown in the rule that the
energy states are characterized by the crystal momentum. Elastic scattering will
take an electron from one k value outside the Fermi surface to another state of
equal energy. It is useful to define a mean free path, λ, that is the distance that
an electron will travel in one momentum state before scattering.

For very dense arrays of strong scatterers the states at the Fermi energy
may be localized [5]. A characteristic of this change is that the mean free path
appears to become comparable with the lattice spacing. (This is more likely to
occur in low dimensions.) However, we shall consider here only the case that
the scattering is weak and so the states are extended, which is necessary for the
material to be metallic. In a metal, the only scattering that is allowed at T = 0
is elastic scattering from defects or the sample boundaries. As the temperature
is raised various inelastic scattering mechanisms become allowed for electrons;
this includes the electron-electron scattering mentioned above, phonon scatter-
ing and, in a ferromagnet, scattering from spin waves or spin disorder. All of
these effects lead to a resistance, which rises as a function of temperature. In
poor conductors, which show a transition from metallic to semiconducting be-
haviour as a function of doping (for example the manganites), the experimentally
applied criterion for a metallic state is that the resistance rises as a function of
temperature.

2.3 Band Magnetism

We consider the properties of magnetic materials which are best described within
a band picture. This is a perturbation scheme where the interactions between
the electrons can be treated as an effective field. The theory is developed using
the generalized susceptibility which is introduced first.
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2.3.1 Magnetic Susceptibility

We should consider the response of the metal to a sinusoidally varying magnetic
field. This is appropriate since the electron wave functions are given by Bloch
waves.

B(r, t) = B0 exp(iq · r − iωt) (2.5)

The response to this will be a magnetization M(r, t) = m exp(iq · r − iωt)
where mα

q = χαβ(q, ω)Bβ
0 . Symmetry requires that the induced magnetization

must have the same dependence on the frequency, ω, and wave vector, q, as the
driving field.

We evaluate the susceptibility, χαβ , using perturbation theory [1,2]. The
result below allows for a ferromagnet in which the energy of the electron states
depends on spin – we shall use it first to discuss paramagnetic metals for which
the electron energies are independent of spin.

χ+−(q, ω) = −4µ2B
∑

k

nk↑ − nk+q↓
εk↑ − εk+q↓ − ω + iε

. (2.6)

We comment on this result. In second order perturbation theory, an electron
makes a virtual transition between an occupied state with low energy to an
unoccupied state with higher energy. This is why we have the two Fermi factors,
n, on the top – the result is zero unless they differ. At T = 0 the factors n are
either zero or unity if the energy lies below or above the Fermi energy. We see
that we get a contribution if and only if one of the factors n in the numerator
is unity. If we have εk↑ ≤ εF and εk+q↓ ≥ εF then this necessarily implies that
εk↑ < εk+q↓ so that the denominator is negative and the whole function is
positive for ω → 0. The analogous expression for the dielectric susceptibility is
known as the Lindhard function.

We can show that (2.6) reduces to the well-known expression for the Pauli
susceptibility

lim
q→0

χ(q, 0) = 2µ0µ2BD(εF) . (2.7)

In a ferromagnetic metal, the electron-electron repulsion is reduced if the
electron spins are parallel. This is because the Pauli exclusion principle keeps
them apart. The simplest description is in terms of a self-consistent field. We
assume that the d electrons interact when they come on to the same atomic site,
so the interaction between the electrons may be taken as short range in real
space (the Hubbard model). A point interaction in real space transforms into a
constant in momentum space and so the interaction constant I may be assumed
to be independent of q. In this approximation the magnetization is related to an
external field, B0, by

m(q) = χ(q) [B0 + Im(q)] . (2.8)

This may be solved to give the magnetization and the interacting susceptibility.

m(q) =
χ(q)

1 − Iχ(q)
B0 , χint(q) =

χ(q)
1 − Iχ(q)

. (2.9)
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In some non-magnetic metals, particularly Pd, the interacting susceptibility
may be very considerably enhanced, however we shall only be concerned with
the situation in which the enhancement is large enough to cause a transition to
an ordered phase.

2.3.2 Ordered Phases

The ordered phases arise because the value of I exceeds the value required to
make the interacting susceptibility diverge.

A metal is unstable with respect to ferromagnetism if Iχ(q = 0) > 1. Since
(2.7) showed that the Pauli susceptibility depends on the density of states at
the Fermi level we see that ferromagnetism is favoured if the density of states is
high. From Fig. 2.1 it is seen that a very high density of states will occur as the
Fermi level drops into the region where the d bands lie, as indeed occurs for Fe,
Co and Ni.

If an instability occurs at finite q0 this means that the material develops a
spin-density wave. In order for this to happen, a maximum must occur in χ(q)
at the value of q0. From (2.6) we see that if there are parallel sheets of the
Fermi surface such that εk+q0 � εk for a range of k then the value of χ(q0) is
particularly large. Fermi surfaces where one part can be folded on to another
by a uniform translation through a wave vector q0 are said to be nested. The
magnetic order has periodicity given by 2π/q0.

Since q0 is determined by the geometry of the Fermi surface there is no
reason why the periodicity should be an exact number of lattice spacings. A
situation in which the ratio of the periodicity to the lattice constant is irrational
(or at least not a simple multiple!) is known as incommensurate. The best-
known example of a spin-density wave material is metallic chromium, which
does have an incommensurate order; however, this is actually rather close to
simple antiferromagnetism. This led people to expect that in a multilayer such
as Cr/Fe the magnetic coupling between the Fe layers would have a period of
approximately one lattice spacing – as is explained in later chapters the period
may be considerably longer than this – in agreement with observation [6].

2.3.3 Stoner Theory

In the ferromagnetic phase, the densities of states for the electrons with up and
down spins are shifted relative to each other by a constant splitting, ∆, where
∆ = εk↓ − εk↑. Stoner postulated that this occurred with no change to the
shape of the bands. The first principles calculations shown in Fig. 2.3 indicate
that this is an excellent approximation. From the figures we can estimate the
exchange splitting to be approximately 1.4 eV in Fe and 1.7 eV in Co. Cobalt
has two crystallographic phases, which are very close to each other in energy.
The hcp phase is stable at room temperature and an fcc phase is stable above
room temperature. However, as it is convenient to compare the two metals when
they are both in the cubic phases, we show the density of states for fcc cobalt.
It is also the relevant phase for most spin-electronics applications because Co
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usually adopts its cubic phase when it is grown in a layer structure with other
cubic metals.
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(a) Co (fcc) (b) Fe (bcc)

Fig. 2.3. (a) The density of states for Co (fcc). The density of states is much higher
for the minority spin band as the large density of states associated with the majority
d band electrons lies entirely below the Fermi energy. (b) The density of states for bcc
Fe. The Fermi energy is at ε = 0 and lies in a region of high density of states for both
the minority and the majority density of states.

Figure 2.3 shows a first principle calculation of the density of states for Fe
and Co (fcc) [3]. The Fermi energy is defined to be at zero. It is clear that the
density of states for the majority spin has moved down relative to that for the
minority spin. The density of states for Co also shows very clearly the separation
of the density of states into a low, broad contribution which comes from the s
electrons and the narrower, very large, density of states which comes from the
d bands. In Co the width of the d bands is approximately 6 eV. The Fermi
momenta for the two spin bands are quite different: kF↑ �= kF↓.

2.3.4 Strong and Weak Ferromagnets

The densities of states for Fe and Co as shown in Fig. 2.3 differ in one very
important respect. The density of states in the majority-spin band for Fe is
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much higher than for Co. The reason for this is that in Co the majority spin
d band has dropped to just below the Fermi level and so is full whereas in Fe
there is partial occupation in both d bands. Metals in which the majority d band
is entirely full are known as strong ferromagnets and those, which have both d
bands partially filled are known as weak. Thus Co is a strong ferromagnet and
Fe is a weak ferromagnet.

The low density of states in the majority d band as occurs for strong fer-
romagnets and shown in the figure for Co has important consequences for spin
dependent electronic transport and will be discussed in detail in other chapters
of the book.

There is another important distinction between strong and weak ferromag-
nets that may be seen from the Slater–Pauling curve, which is shown in Fig. 2.4.
Consider the elements Fe, Co, Ni and Cu and their alloys. An alloy of Cu40Ni60
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Fig. 2.4. Slater–Pauling curve. The magnetic moment per site is given in units of Bohr
magnetons (µB) for elements and alloys, which are characterized by the average number
of electrons per site. After [7].

has a vanishing magnetic moment. As the electron concentration is reduced by
increasing the fraction of Ni the magnetic moment increases linearly as each hole
is taken from the minority-spin band. This continues until an alloy of approxi-
mately 50% FeCo is reached, when the curve bends over. Deviation from linear
behaviour corresponds to the holes first appearing in the majority-spin band



44 G. A. Gehring

(there is also a break in the curve between Fe and Co which corresponds to the
point where the crystal structure changes from bcc (Fe rich) to fcc (Co rich)).

The early period elements V, Cr, Mn have a tendency towards antiferromag-
netism and so do not lie on the straight line for z > 8.

2.3.5 Excitations in Ferromagnets

For low momenta there are two types of spin excitations we should consider.
Stoner excitations in which a single electron is excited from within the Fermi sea
and changes both its spin and its momentum and so moves to an unoccupied
region of reciprocal space. This energy is given by

Eq = εk+q↓ − εk↑ where E0 = ∆ (q = 0) . (2.10)

Another form of excitation is a spin wave in which there is a coherent rotation of
the magnetization over a wavelength λ = 2π/q – the energies of these excitations
vary as q2 for small values of q. Both types of excitation are shown schematically
in Fig. 2.5.

 Eq

         ∆

      q

Fig. 2.5. Schematic diagram of excitation energies in a ferromagnet. The Stoner excita-
tions are allowed for all values of energy between the two straight lines. The spin-wave
excitations broaden and weaken as they cross into the Stoner band.

The Stoner excitations fill the whole area between the two straight lines.
At q = 0, the energy is ∆ but for larger values of q, the energy of the Stoner
excitation which is given by (2.10) takes a range of different values depending on
the magnitude of k and the relative orientation of k and q. A Stoner excitation
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can have zero energy, when q is equal to the difference between the two Fermi
momenta, q = kF↑ − kF↓.

The spin-wave branch broadens as it crosses into the region where there are
Stoner excitations as the spin wave can then decay more readily. The spin waves
in ferromagnets may be observed by neutron scattering.

2.3.6 The Phase Transition

The free energy, F = U − TS, is a minimum at all temperatures. This occurs
because of a balance between the energy U (a minimum in the ground state) and
the entropy S which is a maximum in the disordered phase. The phase transition
occurs at Tc as a result of the benefit of increasing entropy, S (disorder), at the
expense of losing benefit of large negative energy, U , due to order. In a metal the
spin-wave excitations are more readily excited than the Stoner excitations and it
is these excitations which are responsible for the reduction of magnetism at high
temperatures. Another consequence of this is that above Tc the magnitude of the
magnetization at a given site 〈m2

n〉 is not reduced much below its low temperature
value and the paramagnetic susceptibility is given by a Curie–Weiss law rather
than the result of applying the Stoner theory to high temperatures. Individual
sites are likely to have a net magnetic moment albeit randomly oriented. In the
original, Stoner, picture, which is valid for weak itinerant ferromagnets all the
magnetic moments also vanish above Tc.

2.3.7 Impurities in Nonmagnetic Metals

Impurities may have charge – the electric field must be screened out. It may
have magnetic moment – this will also produce a magnetic moment distribution
around it.

For a local magnetic field in the β direction, hβ at r′, the response is written
in terms of the Fourier transform of the susceptibility that we derived earlier.

mα(r) =
∫

d3r′ χαβ(r − r′)hβ(r′) . (2.11)

Similarly we find the polarization, p(r), due to an electric field E in the µ
direction

pλ(r) =
∫

d3r′ αλµ(r − r′)Eµ(r′) , (2.12)

where αλµ denotes the electric polarizibility. The magnetic susceptibility in real
space is given below.

χαβ(r − r′) =
1√
N

∫
d3q exp[−iq · (r − r′)]χαβ(q)

=
−4µ2B√
N

∑
kq

exp [−iq · (r − r′)] (nk − nk+q)
εk − εk+q + iε

(2.13)
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The existence of a sharp Fermi surface means that χαβ(q) has a weak singu-
larity (change in slope) at q = 2kF. This is shown schematically for a spherical
Fermi surface in Fig. 2.6. We remember that if εk lies inside the Fermi surface
then εk+q must lie outside. If q is smaller than 2kF then this will be satisfied for
some but not all k. However if q is greater than 2kF then all states at k + q will
lie outside. This is shown schematically below.

              k + q              k + q    
           k + q    
    k                k       k    
        
 
        (a)         (b)          (c) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.6. (a) This term cannot contribute to χ because both states corresponding to
k and k + q lie inside the Fermi sphere. (b) This term does contribute to χ, although
q is small. (c) This term has a value of q, which is so large that it will contribute to χ
whatever value of k is chosen.

In the double sum over k and q there is a weak discontinuity (a change in
slope ) at q = 2kF. This can be understood from the diagram. Imagine that we
fix q and sum over k. If q < 2kF some values of k will contribute to the sum as
shown in Figs. 2.6a and b. For values of q such that q > 2kF all values of k can
contribute. This is a very weak singularity of χ in momentum space and as usual
this causes the Fourier transform in real space to show oscillations. The simple,
free electron, Fermi surface sketched here has only one spanning wave vector.
For a more complicated Fermi surface there may be several different extremal
spanning wavevectors; this is shown in Fig. 2.7 for copper [8].

Friedel Oscillations

These are the charge oscillations which occur around a charged impurity at r = 0.
A simplified derivation of this result is obtained from the susceptibility that we
have given in (2.13). The impurity charge generates a local electric potential,
which then gives rise to a spatially distributed response as determined by (2.13).
At large distances, the dominant term is the oscillation arising from the sharp
Fermi surface. The screening charge decays like r−3 at large distances and shows
the characteristic oscillation with 2kF; there is a phase shift φ (this is actually
important in fixing the total screening charge equal to the impurity charge so
that the impurity charge is exactly compensated by the oscillating screening
charge).

∆ρ(r) ∼ cos(2kFr + φ)
r3

(2.14)
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Ruderman–Kittel Oscillations

In a similar way a nonmagnetic metal responds to an impurity that has a mag-
netic moment and an oscillating magnetic density is set up. The local impurity
spin S has an exchange interaction with the conduction electron spins σ,

∆E = JS · σ . (2.15)

The conduction electrons see a local magnetic field, JS, and using the result
(2.13) the response at a distance is given by

∆m(r) ∼ cos(2kFr + ϕ)
r3

. (2.16)

This has a very important consequence if there is a small concentration of mag-
netic ions in a paramagnetic host. Each ion produces the oscillating magneti-
zation around itself that in turn generates a magnetic field which acts on the
other ions. Hence there is a long range and oscillating interaction between the
magnetic ions with a strength, which is characterized by (JS)2. This is known
as the RKKY interaction (Ruderman–Kittel–Kasuya–Yoshida) [1].

The theory presented here was for a spherical Fermi surface for which there
is one value for the spanning wave vector given by 2kF. In a material with a
more complicated Fermi surface there may be several ‘spanning’ Fermi momenta.
These give rise to different periods of oscillation. Early theories of the coupling
between magnetic layers assumed that the oscillations arose from the RKKY
interaction described here. More recently it is seen that it is more correct to
consider the effects of confinement in the spacer layer [8] (see also the chapter
by J. Mathon in this volume). However, the spanning q vectors still determine
the periods. These are shown in Fig. 2.7 for Cu [8].

2.4 Strong Coupling Theories

In this section we consider the interaction between electrons more carefully be-
cause perturbation theory breaks down. We consider first what criterion must be
met in order for a single metal ion to carry a local moment when it is dissolved
in a non-magnetic host.

2.4.1 Formation of Local Moments

When a transition element A is dissolved into metal B it may carry a local
moment. If it does then the magnetic susceptibility has a Curie–Weiss form
χ � C/T at high temperatures and if the element B were superconducting, the
value of the superconducting transition temperature, Tc, drops dramatically for
even small concentrations of A, because the local moment causes pair breaking.

We need to consider an impurity with single d orbital ϕd which can hold
two electrons with opposite spins. The possible energies are 0, E0, E0, 2E0 + U
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Fig. 2.7. A cross-section through the Fermi surface of Cu showing the spanning q
vectors. The section is along the (110) plane passing through the origin. The solid
arrows indicate the q vectors giving the oscillation periods for the (001), (111) and
(110) orientations. Reproduced from [8] with kind permission of the author.

corresponding to an occupation of zero, one or two. The states are written as
| 0〉, |↑〉, |↓〉, |↑↓〉. This is the Anderson model.

Qualitatively a local moment will occur if the state with one d electron lies
below the Fermi surface, i.e. E0 < εF but the state with two d electrons lies
above the Fermi energy 2E0 + U > εF. However, we need to be more careful
as a localized state will hybridize with the conduction electrons; the strength of
this hybridization is designated as V . This allows the state with one d electron
to decay into the state where the occupation is zero and there is one extra
conduction electron. This means that the localized state acquires a width, ∆,
where

∆ ∼ πV 2D(εF) . (2.17)

We should solve for the occupation of the d level self-consistently [1,9]. The
density of the d electron states is given in terms of a Lorenzian with a width
given by ∆.

ϕσ(ε) = +
1
π

∆

(E − Eσ)2 +∆2 , (2.18)

with σ =↑, ↓. This allows us to calculate the occupation of the spin up state.

〈nd↑〉 =
∫ εF

0
dεD↑(ε) =

1
π

cot−1
[
E↑ − εF
∆

]
. (2.19)

The energy of the state with an electron with spin ↑ depends on the occupation
of the state with spin ↓ because the electrons are interacting. In this theory we
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use a simple Hartee–Fock approximation to estimate the energy and obtain

E↑ = E0 + U〈nd↓〉 . (2.20)

This leads to two self-consistent equations for 〈nd↑〉 and 〈nd↓〉.

〈nd↑〉 =
1
π

cot−1
[
E0 − εF + U〈nd↓〉

∆

]
(2.21)

〈nd↓〉 =
1
π

cot−1
[
E0 − εF + U〈nd↑〉

∆

]
. (2.22)

These must be solved self-consistently. There is a non-magnetic solution in which
〈nd↑〉 = 〈nd↓〉 and a magnetic solution 〈nd↑〉 �= 〈nd↓〉. The condition for local
moments depends on E0 − εF, ϕ(εF), V and U [10]. The criterion depends on
the particular combination of elements involved, however a large U is certainly
necessary. Mn which has a very large U carries a moment in most hosts whereas
Fe where U is more modest has a local moment in Pd but not in Ru [1].

2.4.2 Ordered Arrays of Moments

The susceptibility of a single spin moment in a metallic host behaving classically
follows the Curie law, χ ∼ 1/T . This gives a finite entropy change (for field or
temperature changes) at very low temperatures in conflict with the third law
of thermodynamics. The third law is satisfied when the system settles into its
quantum mechanical ground state. As the individual susceptibilities are becom-
ing very large at low temperatures only a very small interaction between the
moments is enough to give an ordered state.

In this section we look at the way in which a ground state may be reached
by interaction with other magnetic particles.

We have already seen that the local spin interacts with the conduction elec-
trons by an exchange, JS, and that this generates an exchange interaction,
JRKKY , between localized spins which varies as, JRKKY ∼ (JS)2 cos(2kFr +
ϕ)/r3. Each spin will interact with several of its neighbours. The interaction is
oscillating between ferromagnetic and antiferromagnetic, so the fields from the
neighbours may add or subtract such that each spin is finally acted on by a
field, which is given by a random distribution. This leads to frustration as there
is no easy way for a system to find the true ground state (even if one exists!).
The spins ‘freeze out’ at a certain temperature below which they are locked into
their particular local configuration. One experimental manifestation of this is
that the alloy exhibits non-reversible behaviour – in particular a sample, which
was cooled in a magnetic field, will have a magnetic moment until it is warmed
above the temperature where the freezing occurred. This occurs for example for
small quantities of Mn dissolved in Cu. As the RKKY interactions which couple
the Mn atoms are long range the spin glass properties are seen down to very low
concentration even for parts per million. A different scenario holds for alloys of
Pd because this element is very close to ferromagnetism itself. The interacting
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susceptibility given by (2.9) is strongly enhanced because [1−Iχ(q = 0)]−1 ∼ 10.
This enhancement is peaked strongly near q = 0. The susceptibility in real space
given by (2.13) is the Fourier transform of χint(q). A sharply peaked function in
q space will give rise to a slowly varying function in real space. Hence when an
element carrying a local moment such as Fe or Co is dissolved into Pd it induces
a very large island of positive polarization around itself. The effective number of
Bohr magnetons which can be associated with a single atom of Fe, for example,
may be as high as 13; of these ∼ 2µB will be on the Fe ion and the rest spread
over the large polarized island of Pd.

Since one magnetic atom produces such a change it is not surprising to learn
that only a very small concentration is required to produce ferromagnetism.

2.4.3 The Kondo Effect

So far we introduced the exchange, J , between the spin of the conduction electron
and the localized spin on the impurity, S, as a phenomenological constant. In
fact this was not necessary and it may be derived from the Anderson model for
local moments discussed in Sect. 2.4.1. A necessary condition for a local moment
to form is that U (the on-site electron repulsion) is large. We consider putting
a second conduction electron on a site where there is already a local moment.
The two electrons must have opposite spins. The overlap integral is V and the
extra energy penalty is U . In second order perturbation theory, the energy may
be lowered by an amount V 2/U provided the spins were antiparallel. The Pauli
exclusion principle allows no such lowering for the parallel spin configuration.
Thus the antiparallel configuration is lowered and this can be written as an
antiferromagnetic exchange energy as introduced in (2.15), JS · σ, where we
now know that J ∼ V 2/U . This was a very simple derivation, a more rigorous
discussions will be found in Hewson [9].

We discussed earlier that an isolated local moment will have a susceptibility,
which obeys the Curie law and hence diverges at absolute zero in contradiction
to the third law of thermodynamics. For a high concentration of such impurities
we argued that one would get some spin ordering. Here we discuss what occurs
if we have an isolated impurity.

The interaction between the conduction electrons and the impurity, JS · σ,
has been shown to give rise to the Ruderman–Kittel oscillations when treated in
lowest order perturbation theory. If we go beyond that we see that the isolated
spin can scatter the conduction electrons and also cause a spin flip. This scat-
tering becomes very large indeed at low temperatures causing a dramatic rise in
the resistivity. This is what was originally called the Kondo effect. At even lower
temperatures a coherent singlet ground state is formed between the localized
spin and the sea of conduction electrons – this is known as the Kondo singlet [9].
The resistivity then becomes independent of temperature. The singlet ground
state is, of course, perfectly allowed by the third law.
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2.4.4 Heavy Fermion Compounds

The last topic we consider is what happens if we have many Kondo centers.
We have seen that for many localized spins we can have an ordered magnetic
ground state or a spin glass for a random alloy. For a single isolated spin we see
that we can have a Kondo singlet ground state. In some rare earth compounds
where every unit cell contains a spin it is possible to have a Kondo singlet
form before the spins can order. In this case a coherent Kondo state is formed
where the Kondo singlets themselves become coherent. Such materials are known
as Heavy Fermion compounds because the electron effective mass is usually
strongly enhanced (by a factor of up to 103!). In rare earth compounds there is
a competition between spin ordering via the RKKY interaction and formation
of the heavy Fermion ground state. The two scenarios are not compatible – in
any compound the ordering is of one type or the other [9]. The phase diagram
was first given by Doniach [11]. In compounds where the spin is associated with
a transition metal ion the RKKY interaction is always dominant and there is
either spin ordering at high concentrations or the single site Kondo effect at very
low concentrations.

2.5 Problems

1. A multilayer has 5 layers of Cu and one of Co grown perpendicular to (100).
Assuming that both metals are fcc with the same lattice constant a0 evaluate
the size of the unit cell. How large is the Brillioun zone ? Make a rough sketch
of a possible band structure.

2. List ways in which (a) the density of states and (b) the Fermi surface may
be measured for a non-magnetic metal. What measurements may be made
if it is ferromagnetic ?

3. Assume that copper may be described in free electron theory as a one electron
fcc metal. Estimate the period of the RKKY oscillations.
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3.1 Introduction

This chapter will take you through a simple introduction to transport theory
covering the Boltzmann equation, the Fuchs–Sondheimer model for thin films,
the normal magnetoresistance and quantum interference effects in metals with
strong electron scattering. At the end of the chapter we will also introduce you to
a number of the basic techniques involved in electron transport measurements.
All of this is by way of introduction to basic transport properties common to all
metals. In later chapters these ideas will be developed and applied to systems in
which spin dependent transport is important.

3.2 The Boltzmann Equation

The Boltzmann equation is a semiclassical approach to the calculation of the
electrical conductivity which assumes the electrical field (E) is sufficiently small
that the response to the current, j, is linear, so that j = σE where σ is the
electrical conductivity. It also assumes that the momentum is well defined and
so k is a good quantum number. This is true if the wavelength of the electron
is small compared to the mean free path – the mean distance between scatter-
ers. Figure 3.1a shows the case where the distance between scatterers is large
compared to the wavelength so the electron appears as a plane wave before each
scattering event. In these circumstances the condition kFλ � 1 is satisfied where
kF is the Fermi wavevector and λ is the mean free path of the electrons. On the
other hand, Fig. 3.1b shows the interference effects which can arise when the
separation between impurities is small compared to the electron wavelength. We
will consider the significance of this later in the chapter. In the meantime it is
kFλ � 1 which allows us to think of the electrons as semiclassical particles.

We describe the electrons by their distribution function f(k) which at equi-
librium is simply the Fermi–Dirac distribution

f0(k) =
1

exp [(E(k)− EF)/kBT ] + 1
. (3.1)

In the presence of an electric field the distribution deviates from the equilibrium
such that f(k) = f0(k)+g(k). In a steady state condition the current, and hence
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long distance

plane wave

plane wave

(a)

plane wave

(b)

Fig. 3.1. Schematic drawing of electron waves scattered by impurities in the limits (a)
kFλ � 1 and (b) kFλ � 1.

the conductivity, can be found from a simple average of the electron velocity
using this distribution function.

jx = σE = e
∫
νxf(ν)dν∫
f(ν)dν

=
e
∫
νxg(ν)dν∫
f(ν)dν

(3.2)

where ν = �k/m and note that the integral involving f0 is zero, since this
distribution function describes the equilibrium state where there is no net flow
of electrons. The way in which the distribution function changes in an electric
field is shown schematically in Fig. 3.2. Part (a) of the figure shows the change
(shaded) in the Fermi function, wheras part (b) shows the shift in the projected
Fermi sphere in response to an applied field.

The problem of calculating the conductivity is now reduced to calculating
the distribution function f , in fact since we know f0, we have to calculate g; this
is done using the Boltzmann equation.

In its simplest form the Boltzmann equation is a simple expression of the
steady state condition that the distribution function is not changing with time:

df

dt
=

df

dt

∣∣∣
field

+
df

dt

∣∣∣
scattering

= 0 (3.3)
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Fig. 3.2. Schematic drawing of the distribution function in an applied electric field:
(a) change (shaded) in the Fermi function and (b) shift of the projected Fermi sphere.

It is made up of two terms, the first describing the fact that f is being driven away
from equilibrium as the electrons are accelerated by the electric field and the
second describing the relaxation back to equilibrium due to scattering processes.
Below we shall show how this simple expression can be used to calculate the
conductivity in a simple free electron model, in more complex models and in
thin films.

Let’s start by looking at the simple free electron case since this will help us
to understand some basic ideas. Thus

df

dt

∣∣∣
field

=
df

dkx

dkx

dt
=

df0
dkx

eE
�
; (3.4)

the last step arises as dk/dt is simply related to the rate of change of momentum
and so to the accelerating force on the electrons due to the electric field, E . Here
we have allowed the electron charge e to include its sign. In the last step we have
only kept the derivative of f0 in order to keep terms linear in E . The next step
is to change the derivative with respect to k to one with respect to energy using
the free electron relationship E = �

2k2/2m:

df

dt

∣∣∣
field

= − df0
dE

νxeE . (3.5)
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The scattering term is usually treated within the relaxation time approximation
which assumes that g will relax back to zero exponentially with a relaxation
time, τ , so that

df

dt

∣∣∣
scattering

=
dg

dt

∣∣∣
scattering

= − g

τ
, (3.6)

so
g = − df0

dE
νxeEτ , (3.7)

and substituting this into (3.2) we obtain:

σ = − e2

4π3

∫
ντ

df0
dE

d3k . (3.8)

This is an integral over the vector k, the constants simply reflect the normal-
isation from the integral of f in the denominator of (3.2). In the free electron
model we can think of this as an integral over the magnitude of k which can be
converted to an integral over k2 and thus energy (which is proportional to k2).
Then we can integrate over the spherical energy surface in reciprocal space. This
is made easy by the presence of the df0/dE factor. At absolute zero f0 is step
function equal to 1 below EF and 0 above. The derivative of this is the Dirac
delta function and so the integral over energy simply picks out the Fermi surface
leaving us with a simple integral over the Fermi sphere. We now find:

σ =
e2

12π3�

∮
ν(k)τ(k)dS . (3.9)

Here we have explicitly shown a dependence of the velocity and relaxation time
on k and the integral is over the Fermi surface so that

∮
dS = 4πk2F within the

free electron model. We can further simplify this expression to:

σ =
e2

12π3�
〈λ〉SF . (3.10)

This form is useful to consider when the Fermi surface is not a simple sphere –
as in Cu for example. 〈λ〉 is an average of the mean free path over the Fermi
sphere and SF is the area of the Fermi surface. It is straightforward to show that
this equation is equivalent to the Drude formula for the conductivity.

3.3 The Relationship Between the Boltzmann Equation
and the Kubo–Greenwood Formula

In order to go beyond the simple nearly free electron model we have to go back
to the von Neumann equation which is the quantum mechanical version of the
classical Liouville equation describing a steady state for the number density of
particles:

df(r,p, t)
dt

= 0 (3.11)
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and which we can write as

∂f

∂t
+

dr

dt
· ∂f
∂r

+
dp

dt
· ∂f
∂p

= 0 (3.12)

and using ∂H/∂p = dr/dt and ∂H/∂r = −dp/dt where H is the Hamiltonian
this can be written as:

∂f

∂t
+ {f,H} = 0. (3.13)

The quantum mechanical version of this simply replaces the Poisson bracket with
a commutator and the number density of particles with the electron distribution
function operator, thus:

∂f

∂t
+
i
�
[H, f ] = 0 and H = H0 +H ′ (3.14)

with H0 = p2/2m+ V (r) and H ′ = eEx is the perturbation due to the electric
field. Here p and r are operators.

If we substitute this Hamiltonian into the von Neumann equation, keeping
only terms which are linear in the electric field and assuming that the system is
homogeneous so f has no spatial dependence, then we find:

i
�
[H0, g] +

ieE
�

[x, f0] = 0 . (3.15)

The first term is linear in E because of g, the deviation of f0 from equilibrium.
We can replace the second term with the derivative of the Fermi function and
the velocity operator but it is beyond the scope of this introduction to show this
derivation. Its origin is the identity

i
�
[x, F (H)] = νx

dF (H)
dH

(3.16)

and so we find
i
�
[H0, g] = eEνx

df0
dE

. (3.17)

We can see the resemblance with the Boltzmann equation from the earlier section
by comparing this with (3.5) and (3.6). The second term is the term driving the
electrons from equilibrium and the first term is the relaxation.

This is the equation we now have to solve to find g and to calculate the
conductivity. In this case, however, instead of a simple integral we now evaluate
the trace of νx with g, i.e.

j = 2eTr(νxg) , (3.18)

where νx is the velocity operator.
We can now follow two routes. If we use a k-representation to evaluate the

commutator and trace and use the Born approximation, we end up with what
many refer to as the Boltzmann equation. If we use exact energy eigenfunctions
to evaluate the commutator and trace, we end up with the Kubo–Greenwood
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formula. The details involve some tedious algebra and so we refer the reader to
the bibliography, here we simply give a quick overview and discuss the results.

Using the energy-eigenfunction representation with eigenfunctions labelled
by n whose eigenvalues are En, using (3.16) and (3.17) we find

gnn′ =
ieE [x, f0(H)]nn′ /�

δ +
i
�
(En − En′)

, (3.19)

which then is substituted into (3.18) and using the identity (3.17), taking the
real part gives us

σ =
2e2π
Ω

∑
nn′

| νnn′ |2 δ(En − En′)
df(En)
dE

, (3.20)

which may be written in the form

σ =
2e2π
Ω

∑
nn′

| νnn′ |2 δ(En − En′) δ(En′ − EF) . (3.21)

Ω denotes a k-space volume. If we introduce G′′, the imaginary part of the Green
function operator

G(E) =
1

H − E + iδ
, (3.22)

then this expression for the conductivity is equivalent to

σ =
2e2

πΩ
Tr (G′′νG′′ν) . (3.23)

This is known as the Kubo–Greenwood formula for the conductivity. It has the
advantage that it is an exact expression for the electrical conductivity. Of course,
it presupposes one can derive the exact Green’s functions.

On the other hand, using the k-representation we find

df

dt

∣∣∣
collisions

=
i
�
[H0, g]k,k =

∑
k′

Pkk′ [g(k)− g(k′)] (3.24)

from which we derive a slightly more ‘refined’ Boltzmann equation:

∑
k′

Pkk′ [g(k)− g(k′)] = eEνx
df0
dE

(3.25)

which can be compared with (3.7).
Here Pkk′ is the transition rate for scattering from state k to k′ on the

Fermi sphere. This is derived in the Born approximation and is proportional to
|〈k|V |k′〉|2 where V is the scattering potential which appears in H0.
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3.4 How the Energy and Momentum Relaxation Rates
are Related

This latter derivation of the Boltzmann equation allows us to demonstrate an
important difference between the energy and the transport relaxation time. We
can use (3.9) to obtain the Drude formula σ = ne2τ/m, but the τ here is explic-
itly the energy relaxation time – the time for g to relax back to zero or the Fermi
sphere to relax back to the origin. If we use the more exact derivation, (3.25),
we find σ = ne2τtr/m where τtr is the transport relaxation time which takes
account of the effectiveness of large angle scattering over small angle scattering
in destroying the electric current. The relationship between τtr and τ can be
shown by the following argument.

df

dt

∣∣∣
collisions

=
∑
k′

Pkk′ [g(k)− g(k′)] =
g(k)
τtr

(3.26)

and so
1
τtr

=
∑
k′

Pkk′

[
1− g(k′)

g(k)

]
. (3.27)

Now from (3.7) we see that g will be proportional to E · k and so

1
τtr

=
∑
k′

Pkk′

[
1− k′ · k

k · k

]
(3.28)

=
∑
k′

Pkk′ [1− cos(Θkk′)] , (3.29)

where Θkk′ is the angle between the initial wavevector k and the scattered
wavevector k′ which are both on the Fermi sphere. Here scattering events are
weighted by a (1 − cos(Θ)) factor, so large angle scattering is more effective at
reducing the conductivity.

But the energy relaxation time in the original simple derivation is simply∑
k′ Pkk′ and represents the relaxation of the electron distribution function back

to f0 through all scattering events equally weighted.
The transport relaxation time takes account of the fact that small angle scat-

tering does not diminish the current as effectively as large angle scattering. This
is important for example at low temperature where normal phonon scattering
involves phonons with a small momentum which can only produce small angle
scattering and so become ineffective at scattering electrons.

3.5 Thin Films and the Fuchs–Sondheimer Model

In the above derivation of the Boltzmann equation we assumed that the system
was homogeneous and so the distribution function has no spatial dependence. If
we consider thin films or multilayers then the system is clearly inhomogeneous
in one dimension so that for a thin film f goes to zero at the surfaces of the film.
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The Fuchs–Sondheimer model [1] re-derives the Boltzmann equation and
determines g, but includes the spatial dependence of g. If we refer back to the
Liouville equation we need to include the term involving (dr/dt) · (∂f/∂r) and
if we consider the electric field to be in the x-direction and the z-axis to be
perpendicular to the plane of the film, the Boltzmann equation in the same form
as (3.7) becomes:

g

τ
= − df0

dE
νxeE +

�k

m
· ∂g

∂r
(3.30)

which becomes
g

τ
= − df0

dE
νxeE +

�kz

m

∂g

∂z
(3.31)

which has the solution

g(z, k) = νxeE df0

dE

[
1 + exp

(
− mz

�τkz

)]
(3.32)

and to calculate the conductivity (3.9) becomes

σ =
e2

4π3�

∮
ν(k)τ(k)

df0

dE

[
1 + exp

(
− mz

�τkz

)]
drdk . (3.33)

The details of how to do this integral can be found in Sondheimer’s Advances in
Physics paper [1]. The result is very simple for a thin film for which the boundary
conditions are g(z) = 0 at z = 0 and z = t, and where t, the thickness of the
film, is greater than λ, the mean free path:

ρ

ρB
=
[
1 +

3λ
8t

]
, (3.34)

where ρ is the resistivity and ρB is the bulk resistivity in the limit of infinite
thickness. In Fig. 3.3 we show how the resistivity varies with thickness for a thin
film.

Fig. 3.3. Schematic drawing of the resistivity variation of a thin film as a function of
thickness.
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Sondheimer’s initial motivation for this calculation was as a means to directly
measure the mean free path. A simple resistivity measurement in a bulk sample
depends on many complex factors. But the dependence of ρ/ρB on thickness in a
film whose thickness is comparable with the electron mean free path is dependent
only on the mean free path. A number of workers have used this to determine
the mean free path in thin films and multilayers and for example, find typical
values of about 50 nm in a Co/Cu multilayer.

Camley and Barnas [2], and Valet and Fert [3] have used this Boltzmann
approach to calculate the conductivity in multilayers with boundary conditions
at the interfaces of the metal layers rather than just the surfaces and have
included modifications to the equations to treat the spin up and spin down
electrons separately. This is dealt with in more detail in a later chapter.

3.6 The Normal Magnetoresistance

The magnetoresistance of magnetic thin films and multilayers is one of their
most interesting transport properties and results from the different scattering
properties of spin up and spin down electrons. This will be discussed at great
length in the following chapters but here we give a simple account of the normal
magnetoresistance which is present in all metals. In Fig. 3.4 we see the mag-
netoresistance of a relatively thick Co film with a thickness of about 100 nm,
a little thicker than the mean free path and, with respect to the Sondheimer
model, it would be considered bulk-like. The data is shown with the field both
perpendicular and transverse to the current direction. Below the saturation field
we see the behaviour typical of the anisotropic magnetoresistance found in all
magnetic materials. But for fields greater than the saturation magnetoresistance
we see the normal magnetoresistance which is positive and varies as B2.

In Fig. 3.5 we show data for a very thin Co film of thickness 3 nm. Below
saturation we see the anisotropic magnetoresistance and this time we see a small
negative magnetoresistance above saturation. Broto et al. [4] showed that this
magnetoresistance extends out beyond fields of 40 T. This is also a normal mag-
netoresistance but in the limit of the thickness being smaller than or comparable
with the mean free path.

We can see how the normal magnetoresistance arises by a simple semi-
classical argument. The force on an electron is due to the Lorentz force and
the electric field:

F = m
dν

dt
= eE + eν × B (3.35)

and if we write the current density as j = (e/V )
∑N

i=1 νi where V is the volume
of the sample and N the number of electrons then within the relaxation time
approximation we can write:

dj

dt
=

ne2

m
E +

e2

m
ν × B =

j

τ
(3.36)
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Fig. 3.4. Resistance of a 100 nm thick Co film with the magnetic field parallel (longi-
tudinal) and transverse to the applied current.
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Fig. 3.5. Resistance of a 3 nm thick Co film normalized to the zero field resistance,
measured with the magnetic field parallel (longitudinal) and transverse to the applied
current.
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and so

j =
ne2τ
m

E +
e2τ
m

ν × B . (3.37)

This can be represented vectorially as in Fig. 3.6 where Φ is the Hall angle. If we
consider the situation where j is along the x-axis and the B-field is perpendicular
to j, then the x-component of the electric field is Ex = E cos(φ) and from Fig. 3.6
we find cos(φ) = j/σE so that j = σEx. The interpretation of this is that in the
presence of a B–field the component of the electric field along the direction of
j is unchanged. The B–field simply generates a Hall field perpendicular to j.
In other words the conductivity is independent of the magnetic field and the
normal magnetoresistance is zero.

The only way to get a normal magnetoresistance within a free electron model
is to consider a system with two types of electrons. This is often referred to
as a two-band model because of its application to semiconductors where the
magnetoresistance results from the presence of electrons and holes. In metals like
copper though, the presence of electrons from the neck region of the Fermi surface
and others from the belly region are enough to produce a magnetoresistance.
Now we have to treat the two types of electrons, labelled 1 and 2, separately and
combine the vector diagram for j1 and j2. More details can be found in Ziman’s
textbook on Electrons and Phonons listed in the bibliography. The net result is
that to first order the normal magnetoresistance is given by

∆ρ

ρ
= (ωcτ)

2 =
(
eB
m

τ

)2

=
(

ne2τ
m

1
ne

B

)2

(3.38)

and so
∆ρ

ρ
=
(

RH

ρ

)2

B2 . (3.39)

The normal magnetoresistance is always positive and can vary in magnitude
widely depending on the resistivity of the sample. The magnetoresistance can
be very substantial in very pure metals at low temperatures with resistivities as
low as 10−4 µΩcm when the normal magnetoresistance can be 10000 in a few
Tesla.

Fig. 3.6. Vector diagram showing the current density, electric field and the Lorentz
force. φ denotes the Hall angle.
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In general most metals follow Kohler’s rule that the magnetoresistance is a
function of B/ρ .

The ‘normal’ magnetoresistance in very thin films in the Fuchs–Sondheimer
regime can in fact be negative as the curvature of the electron trajectory takes the
electrons away from the surface of the sample. This was discussed by Chambers
[5] and explains the small negative magnetoresistance often observed above the
saturation field in magnetic multilayers.

3.7 Beyond the Boltzmann Theory:
Quantum Interference Effects

At the beginning of this chapter we pointed out that the Boltzmann equation is
correct in the limit that the mean free path was long compared to the electron
wavelength, i.e. kFλ � 1. We can see under these conditions that when a plane
wave is scattered from an impurity atom, it sends out a scattered spherical wave
but by the time this wave reaches the next impurity atom it is so large that in
the region around the second scatterer it appears to be a plane wave. When the
scattering is very strong, or the impurities are very close together as in disordered
metals, or if the wavelength of the electrons is very long as in impurity band-
conduction in semiconductors, then the spherical wave from the second scattering
event can interfere with the incoming spherical wave. This interference leads
to substantial corrections to the Boltzmann conductivity, eventually leading to
localisation in the extreme case. In Fig. 3.1 we showed a schematic diagram to
illustrate the two conditions kFλ � 1 and kFλ ∼ 1.

One manifestation of these interference effects is a gradual reduction in the
temperature coefficient of the resistivity so that for resitivities greater than
around 150 µΩcm the resistivity actually decreases as the temperature rises.
Such a decrease in the resistivity is usually considered a feature of semiconduc-
tor behaviour, but in fact small negative temperature coefficients are typical in
strong scattering disordered metals. This correlation between the magnitude of
the resistivity and the temperature coefficient is often referred to as the Mooij
correlation.

The crossover from positive slope to negative slope occurs when kFλ ∼ 1. If
we take (3.10) above and use free electron values for the area of the Fermi sphere
we find

σ =
1
3π2

e2

�

1
λ
(kFλ)2 (3.40)

and so for a typical strong scattering metal with kFλ ∼ 1, λ is of the order of
the Fermi wavelength and σ about 500000 (Ωm)−1, i.e. a resistivity of about
200 µΩcm.

The quantum interference effects arise from the coherent interference of elec-
tron waves which have followed different scattering paths. Most of the paths
interfere incoherently and make an additional contribution to the resistivity.
But if we look at the special case of two waves following the same scattering
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Fig. 3.7. Schematic drawing of the interference between two identical electron trajec-
tories traversed in opposite directions.

path but in opposite directions they return to the starting point in phase and
interfere constructively. This is shown schematically in Fig. 3.7.

In the regime where kFλ ∼ 1 we often think of the electron motion as diffu-
sive and executing a sort of random walk. In Fig. 3.8 we show the probability
distribution of distance diffused from the origin after a time t. It follows the usual
Gaussian distribution of a random walk. The constructive interference enhances
the amplitude of the wavefunction at the origin and so the effect of the interfer-
ence is to increase the probability that the electron returns to the starting point.
This appears as a peak at r = 0 on top of the Gaussian distribution. The effect
is to increase the electrical resistivity or reduce the conductivity:

σ = σB + σQIE =
ne2τ
m

− 1
2π2

e2

�

[
1√
Dτo

− 1√
Dτi

]
. (3.41)

Here D is the diffusion constant (D = (1/3)vFτo) and τo is the elastic relaxation
time.

The negative temperature coefficient is the result of a reduction in the inter-
ference as the temperature rises. In the above equation the first term is the Boltz-
mann contribution to the conductivity which dominates the resistivity. However,
when kFλ ∼ 1 the conductivity has a very small positive temperature coefficient.
The second term is the decrease in conductivity due to interference, the full effect
of which is experienced at T = 0. The third term describes the reduction in the
interference effect as the temperature increases through the inelastic relaxation
time, τi, from electron-phonon scattering or electron-electron scattering. This is
because the constructive interference of the two waves must be in phase when
they return to the starting point but if one has scattered from a phonon, energy
is lost by one electron and the two waves are no longer coherent.

A negative magnetoresistance also results from the reduction in the interfer-
ence in a magnetic field. In Fig. 3.7 we can see that the electrons of interest follow
a closed path which will enclose a magnetic flux. This shifts the phase of the
electron wavefunction, and the two electrons following opposite paths have their
phase shifted in opposite directions. This of course destroys the coherence be-
tween the waves and so the constructive interference is reduced. The interference
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P( , )r t

r

Fig. 3.8. Probability of distance r diffused by an electron after time t. In the case of
weak localisation the probability that the electron returns to the origin is increased.
This is manifested by the peak superimposed on the Gaussian distribution for the
normal diffusion process.

contribution to the resistivity is reduced resulting in a negative magnetoresis-
tance.

∆ρ

ρ
= − 1

2π2
e2

�

√
eB
�

. (3.42)

3.8 Experimental Methods

Having given an overview of the theoretical aspects of the conventional spin
independent electrical transport we now take a brief look at some of the exper-
imental techniques involved in transport measurements. The resistivity itself is
a relatively straightforward measurement to perform: after all we all learnt how
to use a voltmeter and amperemeter at school! But there are a few points that
are worth making.

3.8.1 Resistivity

It is usual to make a four probe measurement of the resistivity in order to
eliminate contributions from the contacts and wires. For a long thin conductor
or rod shaped conductor you can use the approximation that ρ = Rwt/Le where
w is the width of the rod, t the thickness and Le the distance between the
voltage probes. For other shapes of sample it is not so straightforward. For a
‘rectangular’ sample the current lines are not parallel and so we use four contacts
which are evenly spaced and the resistance per square R✷ = C(V/I) and the
resistivity ρ = R✷t. The ‘correction’ factors C are listed in table 3.1 and the
geometry is shown in Fig. 3.9.
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Table 3.1. Correction factors for calculating the resistance per square for a circle and
a rectangular sample

Circle Square Rectangle Rectangle Rectangle

W/S L/D = 1 L/D = 2 L/D = 3 L/D = 4

1 0.9988 0.9994

1.5 1.4788 1.4893 1.4893

2.0 1.9475 1.9475 1.9475

2.5 2.3541 2.3541 2.3541

3.0 2.2662 2.4575 2.7000 2.7005 2.7005

4.0 2.9289 3.1137 3.2246 3.2248 3.2248

5.0 3.3625 3.5098 3.5749 3.5750 3.5750

10.0 4.1716 4.2209 4.2357 4.2357 4.2357

20.0 4.4364 4.4516 4.5553 4.5553 4.5553

40.0 4.5076 4.5120 4.5129 4.5129 4.5129

infinite 4.5324 4.5324 4.5325 4.5325 4.5325

W

L

S S S

Fig. 3.9. Geometry of a four-point resistivity measurement on a rectangular sample.

If the sample is of a completely irregular shape then you can use the van der
Pauw method in which four contacts are placed on the edge of the sample and
several measurements are made with the current and voltage leads interchanged.
This is complicated to show but is discussed in several papers [6,7].

Contacts are a major issue. If your contact resistance is an order of magnitude
higher than the sample resistance, you start to run into noise problems and here
what you do depends on the sample. You can use pressure contacts, solder,
silver or gold paint, ultrasonic bonding or spot welding. With contacts you also
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need to worry about the superconducting or magnetic properties which could
influence your measurements either by changing the stray fields around your
sample or the contact resistance. Workers also use a variety of contact wires on
delicate samples including thin Cu (just because it is to hand), Ni, Au and Pt
are good because they are easy to keep from oxidising, and for superconducting
contacts Nb or NbTi. On magnetic multilayers we have used two main contact
methods: 1) pressure using Coda system contacts (Coda systems Ltd, Braintree,
UK) and 2) solder using indium – here we have found it useful sometimes to
use an ultrasonic soldering iron which helps to break through any oxide coating.
Once In pads are placed on the sample it is possible to cold weld wires to the In
to produce contacts with a resistance less than 1 mΩ.

With dc measurements and a good nanovoltmeter you can measure quickly
to 1 part in 105 for samples between 0.1 Ω and 100 Ω. The method suffers from
thermal emfs which are typically 100 µV in rough and ready systems but if you
take time to reduce the number of contacts in the system between the sample
and the voltmeter and temperature stabilise the sample they can be 500 nV or
less. They can be cancelled out by making measurements with the current in
two different directions but you need to watch for sample heating and Peltier
effects at the contacts if you want to make careful measurements.

Ac measurements are often faster and can be more accurate if looking for
small changes. Using a lock-in amplifier in place of a dc voltmeter will get you
about 1 part in 104 and allows you to see changes of factors of 2 easily. You
can achieve 1 part in 106 but only with a bridge. A typical bridge for measuring
samples between 0.1 Ω and a few hundred Ohms is described by Anderson [8].
There are some quite accurate conductance bridges on the market now, but they
are expensive if you want good precision.

Common sources of error are: thermal emfs, Hall voltages from contacts that
are not in line (best to place them on one side of the sample only), self heating
(just check for non-ohmic behaviour) and bad contacts (you see noise and non-
ohmic behaviour).

3.8.2 Hall Effect and Thermopower

The two other main transport properties which are investigated are the Hall
effect and thermopower. It is worth just mentioning these in passing and point
people in the right direction for more details.

The Hall effect is usually measured using a 5 probe technique on a crucifix
shaped sample when investigating metals where the Hall voltage can be as low
as 100 nV. Apart from the current leads there are three voltage leads, one on
one side of the sample and the other two close to each other on the other side.
It is practically impossible to align the Hall voltage leads and so the two leads
on one side are used to null off any misalignment voltage in zero magnetic field.
The Hall voltage is large in magnetic samples below the saturation field as the
magnetisation contributes to the field experienced by the electrons and it is
possible, but not advisable, to get away with only one Hall lead on each side
of the sample. There are two ways of determining the Hall coefficient. One is
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to vary the field from negative to positive values and any residual misalignment
voltage can be removed since the misalignment voltage will be an even function
of field, but the Hall voltage is an odd function of the field. The other is to hold
the field steady and rotate the sample in the field, although you can hold the
sample steady and rotate the electromagnet around the sample, which reduces
any mechanical disturbance of the sample. For odd shaped samples the van der
Pauw method can also be used but it is not very precise. Hurd’s text listed in
the bibliography is a good reference for the Hall effect in metals.

The thermopower is probably the most difficult of the transport properties
discussed here to measure correctly. There are two approaches. The differential
method in which a small temperature gradient is established across the sample
and the thermal voltage is measured so that S = ∆V/∆T , or the integral method
in which one end of the sample is held at a fixed temperature and the other is
continually heated. The temperature of the hot end and the thermal emf are
measured continuously and the thermopower is the derivative of the thermal emf
versus temperature. These methods are outlined in Barnard’s book listed in the
bibliography. An important problem with the thermopower of a material is that
it can only be measured as part of a thermocouple with reference to another
material. In which case a standard is required, the thermopower of which is
known. This standard is Pb. It was chosen because Pb is in some sense very low
in dislocation density. Any small dislocations in the sample produced by handling
tend to self anneal because Pb is so soft. This makes the thermopower of pure
Pb very reproducible. Roberts [9] in 1977 performed a very careful experiment
measuring the Thomson effect which is related to the thermopower but doesn’t
require a reference. Before 1977 Cu was used as a reference using data from the
early 60’s but this proved to be significantly in error particularly below 100 K.
At low temperature, superconductors can be used as a reference since they have
zero thermopower below Tc.

3.9 Problems

1. Show how the Drude formula can be obtained from (3.9).
2. Derive (3.17).
3. Estimate the normal magnetoresistance in Cu and in Co at room tempera-
ture.

4. Estimate the magnetoresistance due to quantum interference effects in a
disordered metal of resistivity 100 µΩcm. (Typical high quality multilayers
of Co/Cu have a resistivity of less than 10 µΩcm but some sputtered Fe/Cr
multilayers can have resistivities of up to 100 µΩcm.)

3.10 Solutions

1.

σ =
e2

12π3�

∮
ντdS ,
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with ν and τ being constants over the Fermi surface for free electrons. Thus

σ =
e2

12π3�
ντ

∮
dS =

e2

12π3�
ντ 4πk2F

and substituting ν = �kF/m and n = k3F/3π
2 leads to σ = ne2τ/m.

2. Switch on f adiabatically: f → f exp(δt) for t < 0 and f → f for t > 0.

∂f

∂t
+
i
�
[H0 +H ′, f0 + g] = 0

⇒ fδ +
i
�
[H0, f0 + g] +

i
�
[H ′, f0 + g] = 0

fδ +
i
�
[H0, f0] +

i
�
[H ′, f0] +

i
�
[H0, g] +

i
�
[H ′, g] = 0

H ′ ∝ E and g ∝ E in the linear response approximation. [H0, f0] = 0 as f0
is a function of H0. Let δ → 0, then:

i
�
[H0, g] +

i
�
[H ′, f0] = 0

i
�
[H0, g] +

i
�
eE [x, f0] = 0 .

3.

∆R

R
= (ωcτ)

2 =
[
eB
m

σm

ne2

]2
=
[ σ
ne

]2
B2 =

[
RH

ρ

]2
B2

At room temperature typical values are: ρ(Co) = 10 µΩcm, ρ(Cu) = 1 µΩcm
and RH(Cu) = −5 × 10−10 C−1m−3 and the ordinary Hall effect in Co is
RH(Co) = +1 × 10−9 C−1m−3. Therefore the magnetoresistance of both
Cu and Co is of the order of 10−3 and 10−4 at 1 T and room tempera-
ture, respectively. At low temperature it can be much higher if the residual
resistivity ratio is very high, as in very pure samples.

4.

∆σ � − 1
2π2

e2

�

√
eB
m

⇒ ∆ρ

ρ
= − 1

2π2
e2

�

√
eB
m

ρ

At a field of 1 T the magnetoresistance is about 1× 10−4. This is at a tem-
perature below 10 K. By about 60 K the effect is unmeasurable as inelastic
scattering processes destroy the quantum interference.
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4 Phenomenological Theory
of Giant Magnetoresistance

J. Mathon

Department of Mathematics, City University, London EC1V 0HB, United Kingdom

4.1 Introduction

The era of spin electronics began almost exactly ten years ago with the discovery
[1], [2] that the electric current in a magnetic multilayer consisting of a sequence
of thin magnetic layers separated by equally thin non-magnetic metallic layers is
strongly influenced by the relative orientation of the magnetizations of the mag-
netic layers. In fact, it is found that the resistance of the magnetic multilayer is
low when the magnetizations of all the magnetic layers are parallel (Fig. 4.1a)
but it becomes much higher when the magnetizations of the neighbouring mag-
netic layers are ordered antiparallel (Fig. 4.1b). This implies that the internal

(a)

NM

(b)

FM NM FM FM FM NM FM NM FM

Fig. 4.1. Ferromagnetic (a) and antiferromagnetic (b) configurations of a magnetic
multilayer.

magnetic moment of electrons associated with their spin plays an important
role in transport of electric charge. Hence the term spin electronics. The most
commonly used combinations of magnetic and non-magnetic layers are cobalt–
copper and iron–chromium but multilayers based on permalloy as the magnetic
component are also frequently used.

The second key ingredient was the discovery by Stuart Parkin [3] that the
relative orientation of the magnetic moments of two neighbouring magnetic lay-
ers depends on the thickness of the intervening non-magnetic layer. In fact, he
found that the orientation of the magnetic moments of the magnetic layers os-
cillates between parallel (ferromagnetic) and antiparallel (antiferromagnetic) as
a function of the non-magnetic layer thickness. This phenomenon is referred to
as an oscillatory exchange coupling. The oscillatory exchange coupling is very
interesting in its own right since it is one of the rare manifestations of quantum

M.J. Thornton and M. Ziese (Eds.): LNP 569, pp. 71–88, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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interference effects in metals but the underlying physics is not essential for un-
derstanding of the transport of current in magnetic multilayers. The interested
reader is referred to specialist articles such as [4].

Assuming that the thickness of the non-magnetic spacer layer is chosen so
that the spontaneous orientation of the adjacent magnetic layers is antiferro-
magnetic, a change of the magnetic configuration from antiferromagnetic to fer-
romagnetic, and hence a change of the resistance, can be effected by an applied
magnetic field. The relative change of the resistance can be larger than 200%, and
that is the reason why the effect is called giant magnetoresistance (GMR). The
giant magnetoresistance should not be confused with the anisotropic magnetore-
sistance (AMR) or the ordinary positive magnetoresistance discussed elsewhere
in this book. These additional magnetoresistance effects are the intrinsic proper-
ties of elemental solids (or alloys), whereas the giant magnetoresistance is always
the property of a device consisting of alternating layers of different materials.

The ‘optimistic’ magnetoresistance ratio, most commonly used, is defined by

∆R

R
=

R↑↓ − R↑↑

R↑↑ , (4.1)

where R↑↓ and R↑↑ are the resistances of the magnetic multilayer in its an-
tiparallel (zero field) and parallel (saturation field) magnetic configurations.
The optimistic GMR ratio is unbounded but the ‘pessimistic’ ratio (∆R/R) =
(R↑↓ − R↑↑)/R↑↓, which is also in use, is never greater than 1. The dependence
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Fig. 4.2. Dependence of the GMR ratio of an Fe/Cr multilayer on Cr thickness. Af-
ter [3].

of the GMR ratio of a Fe/Cr multilayer on the thickness of the non-magnetic
chromium layer, observed by Parkin in his original experiment [3], is reproduced
in Fig. 4.2. Oscillations of the GMR as a function of chromium thickness occur
because the magnetoresistance effect is measurable only for those thicknesses of
chromium for which the interlayer exchange coupling aligns the magnetic mo-
ments of all the iron layers antiparallel.

A typical magnetoresistance curve [5] for an Fe/Cr multilayer of fifty repeats
of an iron layer 0.45nm thick and a chromium layer 1.2nm thick is shown in
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Fig. 4.3 for two temperatures T = 1.5K and 300K. The gradual decrease of the
resistance with increasing magnetic field, seen in Fig. 4.3, occurs because the
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Fig. 4.3. Magnetoresistance curve of an Fe/Cr multilayer.

magnetic field which tends to align the moments of the magnetic layers parallel
has to overcome the oscillatory exchange coupling which favours the antiparallel
arrangement (for this particular thickness of chromium). Complete alignment is
achieved only in a saturating field equal in magnitude to the exchange field.

The discovery of the GMR has created great excitement since the effect has
important applications, particularly in magnetic information storage technology.
Information is stored on a magnetic disc in the form of small magnetised regions
(domains) arranged in concentric tracks. A conventional reading head used to
be an induction coil which senses the rate of change of the magnetic field as the
disc rotates. The signal and hence the density of magnetised bits is thus limited
by the speed of rotation of the disc. Magnetoresistive sensors do not suffer from
this defect since they sense the strength of the field rather than its rate of
change. They are, therefore, capable of reading discs with a much higher density
of magnetic bits. Magnetoresistive reading heads are commercially available and
will be the leading technology beyond the year 2000 [6].

4.2 Physical Origin of GMR

To clarify the origin of the GMR we begin with a simple overview. There are two
principal geometries of the GMR effect. They are shown schematically in Fig. 4.4.
In the first case (Fig.4a), the current flows perpendicular to the layers (CPP
geometry). Figure 4.4b illustrates the more usual geometry when the current
flows in plane of the layers (CIP). As we shall see, the CPP geometry is easier
to treat theoretically but much more difficult to realize experimentally. This
is because the transverse dimensions of typical multilayers are of the order of
cm2 whereas their thickness is only of the order of a few nanometers. It follows
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Fig. 4.4. Current perpendicular to plane (a) and current in plane (b) GMR geometries.

that the resistance of the multilayer in the CPP geometry is extremely low and,
therefore, very sophisticated experimental techniques [7] are required to measure
accurately the very small voltage drop across the sample. However, since the
underlying physical mechanism is the same in the CPP and CIP geometries,
there is no need in such an introductory account to distinguish between them.

Consider a trilayer with two magnetic layers separated by a non-magnetic
metallic spacer layer. The GMR effect relies on the experimentally established
fact that electron spin is conserved over distances of up to several tens of nanome-
ters, which is greater than the thickness of a typical multilayer. We can thus as-
sume that electric current in the trilayer flows in two channels, one corresponding
to electrons with spin projection ↑ and the other to electrons with spin projec-
tion ↓ [8]. Since the ↑ and ↓ spin channels are independent (spin is conserved)
they can be regarded as two wires connected in parallel.

The second essential ingredient is that electrons with spin projections paral-
lel and antiparallel to the magnetization of the ferromagnetic layer are scattered
at different rates when they enter the ferromagnet. This is called spin-dependent
scattering. Let us assume that electrons with spin antiparallel to the magnetiza-
tion are scattered more strongly. We shall see later that this is the case for the
Co/Cu combination but the opposite is true for the Fe/Cr system. The GMR
effect in a trilayer can be now explained qualitatively using a simple resistor
model shown in Fig. 4.5. In the ferromagnetic configuration of the trilayer, elec-
trons with ↑ spin are weakly scattered both in the first and second ferromagnet
whereas the ↓ spin electrons are strongly scattered in both ferromagnetic lay-
ers. This is modelled by two small resistors in the ↑ spin channel and by two
large resistors in the ↓ spin channel in the equivalent resistor network shown in
Fig. 4.5a. Since the ↓ and ↑ spin channels are connected in parallel, the total
resistance of the trilayer in its ferromagnetic configuration is determined by the
low-resistance ↑ spin channel which shorts the high-resistance ↓ spin channel. It
follows that the total resistance of the trilayer in its ferromagnetic configuration
is low. On the other hand, ↓ spin electrons in the antiferromagnetic configuration
are strongly scattered in the first ferromagnetic layer but weakly scattered in the
second ferromagnetic layer. The ↑ spin electrons are weakly scattered in the first
ferromagnetic layer and strongly scattered in the second. This is modelled in
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Fig. 4.5. Resistor model of GMR.

Fig. 4.5b by one large and one small resistor in each spin channel. There is no
shorting now and the total resistance in the antiferromagnetic configuration is,
therefore, much higher that in the ferromagnetic configuration.

This simple physical model of the GMR effect is believed to be correct but
needs to be converted into a quantitative theory that can explain the differences
between the CIP and CPP geometries, the observed dependence of the GMR on
the layer thicknesses and also the material dependence of the effect. Moreover, we
need to understand the microscopic origin of the spin-dependent scattering and
clarify under what conditions the ↑ and ↓ spin channels in magnetic multilayers
can be treated as independent.

In spite of great efforts made over the last ten years a fully predictive theory
of the GMR is still not available. The first theories were based on the Boltzmann
equation [9]. A more microscopic description used the quantum Kubo formula
[10]. In either approach the electronic band structure of the magnetic and non-
magnetic layers was approximated by a simple parabolic band common to the
whole multilayer and spin dependent scattering was introduced phenomenolog-
ically. When these two assumptions are made, the results obtained from the
Boltzmann and Kubo formulations are essentially equivalent. A more recent
refinement is to incorporate in the Boltzmann equation a fully realistic band
structure [11]. The main advantage of this approach is that the spin dependent
scattering is introduced from first principles and the dependence of the GMR
on different magnet/non-magnet combinations can be thus discussed. Finally, ab
initio quantum calculations based on the Kubo formula and realistic band struc-
ture have recently been made but are possible only for the CPP geometry under
some simplifying assumptions about the disorder in the system. The reader is
referred to an excellent recent review [12] of the status of the theory of the CPP
GMR. In this introductory chapter we shall describe a quantitative resistor net-
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work theory of the GMR [13]. The resistor network theory is equivalent to the
Boltzmann equation approach but has the advantage that it allows us to derive
simple analytic formulae both for the CIP and CPP GMR.

4.3 Spin Dependent Scattering of Electrons
in Magnetic Multilayers

We begin our discussion with the different types of scattering electrons may ex-
perience in magnetic multilayers. In the Boltzmann equation approach we are
mainly concerned with elastic (energy conserving) scattering. In each scatter-
ing act only the direction of propagation of electrons changes. It is essential to
distinguish between spin dependent scattering which causes the GMR and spin
flip scattering which is detrimental to the GMR. The two types of scattering are
illustrated in Fig. 4.6. In the case of spin dependent scattering the orientation
of the electron spin is conserved in each scattering event but the probabilities
of scattering for electrons with ↑ and ↓ spin projections are different. On the
other hand, when an electron undergoes a spin-flip scattering, its spin orienta-
tion changes from ↑ (sz = �/2) to ↓ (sz = −�/2) or vice versa and, at the same
time, the spin of the scattering centre changes by ∆ = � so that the total spin
is conserved.

There are several sources of spin flip scattering. When magnetic multilayers
are prepared, some of the magnetic atoms may enter the non-magnetic spacer
layer to form magnetic impurities. When an electron is scattered off a magnetic
impurity the spins of the electron and that of the impurity can interchange
provided the impurity spin is free to rotate. This is the case when the impurity
spin is not strongly coupled to the spins of the ferromagnetic layers, i.e. when
the impurity is not near the ferromagnet/spacer interface.

�
�
�
�

��
��
��
��

����

����

�
�
�
�

(SPIN CONSERVED)

SPIN-DEPENDENT SCATTERING

ELECTRON

ELECTRON

ELECTRON SPIN-ORBIT SCATTERING ∆ M=1

SPIN WAVE WITH SPIN ONE IS EXCITED

SCATTERING OFF A MAGNETIC IMPURITY

SPIN-FLIP SCATTERING

ELECTRON

ELECTRON

WHOSE SPIN CHANGES BY ONE

(ABSORBED)

        
IMPURITY

Fig. 4.6. Different types of scattering in magnetic multilayers.
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Electrons can also be scattered from spin waves in the ferromagnetic layers.
Spin waves are quasiparticles with spin one and, therefore, creation (annihilation)
of a spin wave in a collision with an electron leads to a flip of the electron spin.
Since creation (annihilation) of spin waves involves the spin-wave energy, this is
an inelastic process which is only important at elevated temperatures.

Finally, when impurities with a strong spin-orbit interaction, such as gold,
are present in the multilayer, the spin of an electron incident on such an impurity
may be reversed due to the spin-orbit interaction.

Since all these processes mix ↑ and ↓ spin channels, they are detrimental
to the GMR. In what follows, we shall assume that spin-flip scattering is weak
so that no mixing of the ↑ and ↓ spin channels takes place. This assumption
may break down for relatively thick multilayers and the implications of spin flip
scattering for GMR are discussed in detail in Ref. [14].

We now turn to the spin dependent scattering which conserves the electron
spin. The key feature here is that electrons with different spin orientations (↑, ↓)
are scattered at different rates when they enter the ferromagnetic layers. Given
that electrons obey the Pauli exclusion principle, an electron can be scattered
from an impurity only to quantum states that are not occupied by other elec-
trons. At zero (low) temperatures, all the states with energies E below the Fermi
energy EF are occupied and those with E > EF are empty. Since scattering from
impurities is elastic, electrons at the Fermi level (which carry the current) can
be scattered only to states in the immediate vicinity of the Fermi level. It follows
that the scattering probability is proportional to the number of states available
for scattering at EF , i.e. to the density of states D(EF ). The densities of states
of copper, cobalt and iron for ↑ (upper panel) and ↓ (lower panel) spin orienta-
tions are shown in Fig. 4.7. The Fermi level in copper (and other noble metals)
intersects only the conduction band whose density of states D(EF ) is low. It
follows that the scattering probability in copper is also low, which explains why
copper is a very good conductor. On the other hand, the d band in transition
metals is only partially occupied and, therefore, the Fermi level in these metals
intersects not only the conduction but also the d bands. Moreover, since the
atomic wave functions of d levels are more localized than those of the outer s
levels, they overlap much less, which means that the d band is narrow and the
corresponding density of states is high. This opens up a new very effective chan-
nel for scattering of conduction electrons into the d band. This new scattering
mechanism (Mott scattering [15]) explains why all transition metals are poor
conductors compared with noble metals.

In the case of magnetic transition metals, we need to consider an additional
crucial factor, namely that d bands for ↑ and ↓ spin electrons are split by the
exchange interaction. This amounts to an almost rigid relative shift of the ↑ and
↓ spin d bands which is clearly seen for cobalt and iron in Fig. 4.7. The ↑ spin
d band in cobalt is full which means that D↑(EF ) is as low as in copper but
the Fermi level in the ↓ spin band lies in the d band and, therefore, D↓(EF )
is much higher than D↑(EF ). The situation for iron is somewhat different in
that the density of states at EF is higher for ↑ spin electrons than for ↓ spin
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Fig. 4.7. Densities of states of copper, cobalt and iron. Broken line denotes the position
of the Fermi level.

electrons. Also the spin asymmetry in the density of states is not so large for iron
as for cobalt. However, in either case, the spin asymmetry of the density of states
results in different scattering rates for ↑ and ↓ spin electrons, i.e. spin dependent
scattering. It should be noted that this mechanism operates even if the scattering
potential itself is independent of the spin, i.e. non-magnetic impurities, vacancies
or stacking faults in a ferromagnetic metal all lead to spin dependent scattering.
Since the Mott scattering mechanism is effective in bulk ferromagnetic metals,
we shall refer to it as bulk spin dependent scattering.

The relative shift of ↑ and ↓ spin bands is simply a consequence of the fact
that the potentials seen by ↑ and ↓ electrons in a ferromagnetic metal are different
because of the exchange interaction. This provides another mechanism of spin
dependent scattering which is specific to multilayers. In an infinite ferromagnet
this effect does not, of course, lead to any spin asymmetry of the resistance
since as long as the potentials seen by ↑ and ↓ electrons are periodic they do
not result in any dissipation of the electron momentum. However, electrons in
a multilayer entering the ferromagnet from the non-magnetic spacer see a spin
dependent potential barrier which reflects differently electrons with ↑ and ↓
spin orientations. In the CPP geometry, even perfect interfaces thus result in
spin dependent scattering [12]. In the CIP geometry, electrons propagate mainly
along interfaces and, therefore, this mechanism is effective only if the interfaces
are rough (intermixing of magnetic and non-magnetic atoms).

As opposed to the bulk Mott mechanism discussed earlier, spin dependent
scattering due to spin dependence of the scattering potentials takes place only
at the ferromagnet/non-magnet interface and is, therefore, called interfacial spin
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dependent scattering. To gain better understanding of the interfacial spin de-
pendent scattering, it is instructive to examine the band structures of the most
common combinations of magnetic and non-magnetic metals used in GMR mul-
tilayers. These are Co/Cu and Fe/Cr, and their band structures in the [001]
direction are shown in Figs. 4.8 and 4.9. It can be seen from Fig. 4.8 that there
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is a very good match between the bands of Cu and the ↑ (majority) spin band
of Co. One can, therefore, conclude that ↑ spin electrons crossing the Cu/Co
interface experience only weak scattering, and this remains true even if Cu and
Co atoms are intermixed at the interface. On the other hand, there is a large
mismatch between the Cu and Co bands for the ↓ (minority) spin electrons re-
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flecting a large difference between the atomic potentials of the two elements. It
follows that ↓ spin electrons are strongly scattered at the Cu/Co interfaces. On
the other hand, matching of the Fe and Cr bands is almost perfect for ↓ spin
electrons but poor for the ↑ spin electrons. The spin asymmetry of scattering
at the Fe/Cr interface has, therefore, a sign opposite to that for the Co/Cu
interface.

The above discussion of spin dependent scattering based on the mismatch
of bands of the magnetic and non-magnetic components of magnetic multilayers
allows us also to understand which combinations of magnetic and non-magnetic
metals should lead to optimum GMR. One clearly seeks as good a match as
possible between the bands of the magnetic layers and those of the spacer layer
in one spin channel and as large as possible mismatch in the other spin channel.
It is clear from Figs. 4.8 and 4.9 that Co/Cu and Fe/Cr fulfil very well these
requirements.

4.4 Resistor Network Theory of GMR

We now need to incorporate the effect of spin dependent scattering into the
Boltzmann equation to determine the resistances of a magnetic multilayer in its
ferromagnetic and antiferromagnetic configurations. Before we focus our atten-
tion on magnetic multilayers, it is useful to recapitulate a few basic facts about
conduction in metals [16]. When an electric field E is applied to a metal, electrons
experience a constant force F = −eE, where e is the electron charge. Electrons
in vacuum would accelerate in an electric field with a constant acceleration pro-
portional to E. However, electrons in a metal are scattered from imperfections
and the scattering modifies the simple accelerated motion. Let us assume that
on average each electron moves during a time interval τ without scattering. The
time τ is called the mean free time and the distance covered during this time is
the mean free path �.

During the time τ each electron with mass m accelerates and acquires a
velocity v in the direction of the electric field. When it is scattered from an
imperfection, the direction of its velocity changes but the magnitude of the
velocity remains unchanged (elastic collision). Every time an electron is scattered
back it has to repeat the acceleration process to regain its velocity v. As a result
a steady state is reached where all the electrons move in the direction of the field
with a velocity acquired during the accelerated motion between two scattering
events

v = −eEτ

m
. (4.2)

If in a constant electric field there are n electrons per unit volume, the electric
current density is

j = −nev =
ne2τE

m
. (4.3)
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Equation (4.3), which follows from the Boltzmann equation in the so called relax-
ation time approximation [17], is just Ohm’s law and we can define the electrical
conductivity σ by j = σE. Since later on we are going to discuss resistances, it
is more convenient to introduce the resistiviy ρ = 1/σ. The resistivity is clearly
given by

ρ =
m

ne2τ
. (4.4)

Apart from the electron density n, the main factor that determines the resistivity
is the mean free time τ . The mean free time is clearly inversely proportional to
the scattering probability. The scattering probability is, in turn, determined by
two factors. The first is the strength of the scattering potential and the second
the density of states at EF available for scattering. As already discussed, the
first factor leads to interfacial spin dependent scattering in magnetic multilayers
and the second is the Mott mechanism which results in spin dependent bulk
scattering. We first consider the effect of the bulk spin dependent scattering.
If follows from (4.3) and the above arguments that we can introduce a spin
dependent resistivity for each ferromagnetic metal by

ρ↑
FM = 2

ρFM

1 + β
; ρ↓

FM = 2
ρFM

1 − β
, (4.5)

where ρFM is the total resistivity of the bulk ferromagnetic metal, 1/ρFM =
1/ρ↑

FM +1/ρ↓
FM (assuming that the two spin channels remain independent). The

parameter β we have introduced will be referred to as the bulk scattering asym-
metry. We shall treat β as a phenomenological parameter but we expect from
the discussion of the Mott scattering mechanism that ρ↑/ρ↓ ≈ D↑(EF )/D↓(EF ).
In particular, it follows from Fig. 4.7 that β < 0 for cobalt and β > 0 for iron.

Similarly, we can introduce an interfacial scattering asymmetry assuming
that there is a thin interfacial layer whose resistance ρσ

F−N is spin dependent due
to the presence of a spin-dependent potential barrier at the ferromagnet/non-
magnet interface. We, therefore, define an interfacial asymmetry parameter γ
by

ρ↑
F−N = 2

ρF−N

1 + γ
; ρ↓

F−N = 2
ρF−N

1 − γ
, (4.6)

where ρF−N is the total resistivity of the interfacial layer. We can again deduce
from Figs. 4.8 and 4.9 that γ < 0 for cobalt and γ > 0 for iron. However, the
actual magnitude of γ is difficult to determine microscopically since it depends
not only on the difference between the potentials seen by ↑ and ↓ spin electrons
at the interface but also on the interfacial roughness and the thickness of the
interfacial layer for which ρσ

F−N is introduced. We shall, therefore, treat γ as a
free parameter.

We are now ready to calculate the GMR. The calculation will be described
for bulk spin dependent scattering and CIP geometry. It is straightforward to
include interfacial spin dependent scattering and this is the subject of the first
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exercise at the end of the chapter. The calculation of the CPP GMR is also left
to the reader (second exercise).

Consider a periodic superlattice of alternating non-magnetic and magnetic
layers with spin dependent scattering in the bulk of the ferromagnetic layers.
Since the whole superlattice is made up of identical building blocks, superlat-
tice unit cells, it is sufficient to calculate the resistances of a unit cell. In the
antiferromagnetic configuration, the magnetic layers with antiparallel magne-
tizations are inequivalent and, therefore, the basic building block we have to
consider (magnetic cell) consists of two magnetic layers containing M atomic
planes each and two non-magnetic layers of N atomic planes each. The geome-
try for which the GMR is going to be calculated and the definition of a magnetic
cell are illustrated in Fig. 4.10. It follows from (4.5) that an electron of a given
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Fig. 4.10. Magnetic superlattice.

spin travelling in a superlattice sees regions of different local resistivities. The
resistivity is high in those regions where there is a high density of states at EF

available for scattering. There are, therefore, three different local resistivities in
the superlattice unit cell: the resistivity of the non-magnetic spacer layer ρNM ,
which is the same for both spin orientations, and the high ρH

FM and low ρL
FM

resistivities for the two different spin orientations in the ferromagnet. The low re-
sistivity of the ferromagnet satisfies ρNM ≈ ρL

FM both for the Co/Cu and Fe/Cr
systems. The distribution of such regions in a superlattice magnetic cell in its
ferromagnetic and antiferromagnetic configurations is shown in Fig. 4.11. It is
clear from Fig. 4.11 that the unit cell of a magnetic superlattice is equivalent to
a system of eight resistors, with four resistors in each spin channel. To determine
the magnetoresistance, we first need a rule for adding up the four resistors in the
same spin channel. Once the total resistances in both spin channels are known,
they can be simply added as resistors in parallel to give the total resistance of
the magnetic unit cell. This needs to be done for the ferromagnetic (↑↑) and
antiferromagnetic (↑↓) configurations. Following this prescription, we find that
the resistances R↑↑ and R↑↓ are given by

1
R↑↑

=
(

1
R↑

+
1

R↓

)
↑↑
;

1
R↑↓

=
(

1
R↑

+
1

R↓

)
↑↓

, (4.7)
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where Rσ is the resistance of the unit cell in a spin channel σ.
It is now necessary to determine the rules for adding up the four resistors

in the same spin channel. It is clear from Fig. 4.11 that for the ferromagnetic
configuration the problem reduces to the calculation of the resistance of a two-
component superlattice with alternating regions of thicknesses a and b having
resistances ρa and ρb. For the antiferromagnetic configuration a four-component
superlattice needs to be considered. To clarify the underlying physics, it is suf-
ficient to investigate the two-component superlattice. Because the current flows
in the direction of the layers forming the superlattice, one might be tempted to
conclude that the resistances of the layers should always be added up as for re-
sistors connected in parallel. However, it is easy to demonstrate that, in general,
that would be incorrect.

Let us assume for simplicity that the resistivity ρa is higher than ρb because
there is a higher density of scatterers in the layer a. This is illustrated in Fig. 4.12.
Consider first the simplest case when there is a ‘partition’ between the layers a
and b which prevents electrons crossing the a/b interface. Such a system is clearly
equivalent to two independent resistors because electrons remain confined to their
respective layers. In this case the above argument applies, i.e. the two layers
behave as ordinary resistors in parallel. However, there are no impenetrable
partitions between the neighbouring regions in a superlattice. Electrons can cross
easily the interface and undergo scattering in both layers. It follows that the two
layers cannot be regarded as independent and, in general, the simple rules for a
conventional network of resistors no longer apply. The reader might conclude that
we can get no further without a detailed microscopic calculation. Fortunately
this is not so and there are two physically important limits in which the total
resistance of a superlattice can be easily evaluated.
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Case A: The mean free path in each layer of a superlattice is much shorter
than the thickness of the layer. Because the mean free path is so short, very
few electrons starting in one layer reach the neighbouring layer. It follows that
electrons from different layers do not ‘mix’ and flow in their respective separate
resistor channels as if the layers were separated by ‘partitions’. All resistors then
behave as resistors in a conventional resistor network and should be added in
parallel. Inspection of Fig. 4.11 shows that there are exactly the same number of
resistors of each type in the ferromagnetic and antiferromagnetic configurations,
which means that R↑↑ = R↑↓ and there is no magnetoresistance in this limit.

Case B: The mean free path in each layer is much longer than the thickness
of the layer. For a metallic superlattice with a small number of atomic planes
in each layer we are always close to this limit since typical mean free paths in
metals are of the order of tens or even hundreds of interatomic distances. It is,
therefore, the limit which is applicable to magnetic superlattices exhibiting the
giant magnetoresistance.

Conduction electrons now sample equally layers with low and high resistivity
and, therefore, experience an average resistivity. For a two-component superlat-
tice this is given by

ρ̄ =
aρa + bρb

a + b
(4.8)

The generalisation of (4.8) to a four-component superlattice is obvious.
The results for cases A and B obtained here from simple physical consider-

ations can be derived as limits of a more general approach based on the Boltz-
mann equation [13]. In fact, such a microscopic calculation shows that the limit
in which the simple averaging (4.8) applies is reached very rapidly and we are
close to this limit already for a mean free path comparable with the thickness of
the superlattice unit cell.

We can now apply (4.8) and the corresponding result for the four-component
superlattice to evaluate the magnetoresistance ∆R/R. In going from resistivities
to the total resistance of a superlattice cell, care has to be taken of the dimen-
sions of the cell. However, because the length of the sample in the direction of the
current and the transverse area per atomic plane are the same in the ferromag-
netic and antiferromagnetic configurations, they cancel out in the calculation of
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∆R/R. It is, therefore, sufficient to determine for each spin channel the reduced
resistance Rσ per unit length and unit area. It is then clear from Fig. 4.11 that(

1
R

)
↑↑

= 2(M + N)2
(

1
MρL

FM + NρNM
+

1
MρH

FM + NρNM

)
(4.9)

(
1
R

)
↑↓

=
8(M + N)2

MρL
FM + MρH

FM + 2NρNM
. (4.10)

Substituting from (4.9) and (4.10) into (4.1), we find that the magnetoresistance
is given by

∆R

R
=

(1 − β)2

4(1 + N/Mµ)(β + N/Mµ)
, (4.11)

where β is the bulk scattering asymmetry and µ = ρL
FM/ρNM .

It is now easy to pinpoint the main factors that determine the GMR. Clearly
∆R/R is a function of two variables, β and Mµ/N . The most important re-
quirement for large GMR is that the spin asymmetry ratio β should be large.
For a given β, the GMR increases with increasing Mµ/N but saturates for a
large value of this parameter. As a function of the spacer layer thickness N ,
the GMR decreases monotonically and falls off as 1/N2 for large N , which is as
observed (see the broken line in Fig. 4.2). This can be viewed as ‘shunting’ of
the cooperative effect of the magnetic layers by an ‘inactive’ spacer layer.

Experiments show [18] that CIP GMR also decreases with increasing thick-
ness of the magnetic layers. This is not reproduced by (4.11). There are two
possible reasons for the failure of (4.11) in the limit of thick magnetic layers.
Since ρH

FM is high, the mean free path in one of the spin channels may become
shorter than the ferromagnetic layer thickness and the simple averaging (4.8) of
the resistivities no longer applies. The other reason is our neglect of interfacial
spin dependent scattering. When the simple averaging (4.8) fails, the only alter-
native is a numerical solution of the Boltzmann equation in the layer geometry
[13]. On the other hand, the effect of interfacial scattering can be easily included
in the resistor network formalism.

Until now we have assumed that bulk spin dependent scattering is dominant.
We now adopt the other extreme point of view, i.e. assume that interfacial spin
dependent scattering is so strong that bulk scattering can be neglected (β = 0).
We shall further assume that there are I interfacial atomic planes with ρσ

F−N

defined by (4.6). Finally we shall make a simplifying assumption ρNM = ρL
FM (a

good approximation for Co/Cu and Fe/Cr multilayers). It is then easy to show
(exercise 1) that

∆R

R
=

(1 − γ)2

4[1 + (N + M)/2Iν][γ + (N + M)/2Iν]
, (4.12)

where γ is the interfacial scattering asymmetry defined in (4.6) and ν =
ρL

F−N/ρNM . The GMR now decreases both with increasing thicknesses N, M
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of the spacer and the ferromagnet. The physical interpretation is that the
magnetic layer first grows as a rough interface with strong spin dependent
scattering and then turns into an ‘inactive’ shunting layer. It might seem that
the model with dominant interfacial scattering explains better the dependence
of the GMR on the ferromagnet thickness. However, numerical solution of the
Boltzmann equation with dominant bulk spin dependent scattering leads also to
a GMR which decreases with increasing thickness of the ferromagnetic layers,
in good agreement with experiment [18]. One must, therefore, conclude that by
analyzing experimental data in the CIP geometry, it is not possible to determine
reliably the relative importance of bulk and interface spin dependent scattering.
The situation is much clearer in the CPP geometry which will be now briefly
discussed.

In applying the simple resistor model to the CPP GMR we need to make an
assumption that the mean free path for spin-flip scattering is longer than the
total length of the multilayer in the direction of the current. This is necessary
for ↑ and ↓ spin channels to remain independent so that we can add up their
total resistances R↑ and R↓ in parallel. We shall again introduce bulk scattering
asymmetry using (4.5), but it is more convenient in the CPP geometry to char-
acterise interfacial scattering by the total resistances of an interface for ↑ and ↓
spin channels, i.e. we define high RH

F−N and low RL
F−N interfacial resistances.

Naturally, they are related to the total interfacial resistance RF−N and to the in-
terfacial scattering asymmetry γ via (4.6). Finally, we need to decide how to add
up all the resistors in the same spin channel. This is simple in the CPP geometry
since electrons move in the direction perpendicular to the layers and, therefore,
sample individual layers one by one. All the layers thus behave as conventional
resistors connected in series. We shall again consider a superlattice having M
atomic planes in each ferromagnetic layer and N planes in each non-magnetic
layer. To calculate the total resistances R↑↑ and R↑↓ of the superlattice in its
ferromagnetic and antiferromagnetic configurations, we need to introduce also
the total number NMC of magnetic unit cells. It is then straightforward to show
that

(AR)↑↓ =
NMC

2
[M(ρL

FM + ρH
FM ) + 2ρNMN + 2A(RH

F−N + RL
F−N )], (4.13)

where A is the cross section area of the superlattice and the quantities ρL
FM , ρH

FM

have already been introduced in the CIP geometry.
Equation (4.13) can be used to test the validity of the series resistor model. It

implies that the total resistance in the antiferromagnetic configuration increases
linearly with the thickness of the superlattice (NMC). It is found [19] that (4.13)
is well obeyed for Co/Cu and Co/Ag multilayers.

One can easily obtain also the total resistance R↑↑ of a magnetic superlattice
in its ferromagnetic configuration and, hence, the GMR ratio ∆R/R. However,
it turns out that it is more useful to examine a closely related quantity

[(R↑↓ − R↑↑)R↑↓]1/2 =
NMC

2
(βρ∗

FMM + 2γAR∗
F−N ), (4.14)
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where ρ∗
FM = ρFM/(1 − β2), R∗

F−N = RF−N/(1 − γ2) and β, γ are the bulk
and interfacial scattering asymmetries. If we plot the left-hand side of (4.14) as
a function of the thickness M of the ferromagnetic layer keeping NMC fixed, we
obtain a straight line with a slope NMCβρ∗

FM/2 and an intercept NMCγAR∗
F−N .

The slope is thus determined entirely by bulk spin dependent scattering and the
intercept by interfacial spin dependent scattering. It follows that the two types
of scattering can be separated in the CPP geometry. An analysis of the CPP
GMR experiments for Co/Ag and Co/Cu superlattices [20], [12] based on (4.14)
shows that β ≈ 0.5 and γ ≈ 0.6− 0.8 for both these systems. Bulk and interface
scattering are, therefore, comparable.

The equivalent resistor theory of the GMR provides a correct semi-
quantitative explanation of the effect and is particularly useful for analyzing
experiments in the CPP geometry [12]. However, its main shortcomings are that
the spin scattering asymmetries β and γ are introduced as phenomenological
parameters and the differences between the band structures of the ferromagnetic
and non-magnetic layers are ignored. An interesting recent development is a
calculation [21] of the GMR assuming the Mott scattering mechanism (bulk spin
dependent scattering) but using the Boltzmann equation in the layer geometry
combined with a realistic tight-binding band structure. This approach provides
a microscopic underpinning of the phenomenological resistor model described
here.

4.5 Exercises

1. Derive (4.12) for the CIP GMR due to interfacial scattering.
2. Derive the formula (4.14) for the CPP GMR.
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5 Electronic Structure, Exchange
and Magnetism in Oxides
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The Netherlands

5.1 Introduction

Magnetic oxides are a curious class of materials with good prospects for ap-
plications in spin electronics. These materials exhibit a wide variety of mag-
netic properties (e.g. ferro-, ferri- and antiferromagnetic structures) as well as
diverse transport properties including good insulators, systems with insulator–
metal transitions, materials with “bad metallic” conductivity, good conductors
and superconductors.

Typically in these materials the same electrons are responsible for both the
magnetic and electric properties, so a strong interdependence of these charac-
teristics should be seen. Indeed this is what is observed experimentally in many
systems of this class. The most spectacular effect of this type is probably the
“colossal magnetoresistance” (CMR) – the term coined recently, mostly for the
effects observed in doped manganites [1]. This term may be also applied to some
other compounds, e.g. EuO, see e.g. [2], in which the effect is sometimes much
stronger than in the conventional manganites.

There are a number of textbooks, monographs [3,4] and review articles [5,6,7]
in which the basic physics of the transition metal oxides are described. In this
short chapter I will present a summary of the main concepts and notions used in
describing the structure and properties of transition metal oxides. Special atten-
tion will be paid to the question when should ferromagnetic order be expected
in oxides, and what is the relationship between the type of magnetic ordering
and transport properties (notably resistivity) of magnetic oxides.

5.2 Transition Metal Ions in Crystals

Isolated ions with partially filled 3d-shells have 5-fold degenerate orbitals (l = 2,
(2l+1)-degenerate levels), in which we can put up to 10 electrons ( 2× (2l+1) ).
The filling of these levels follows Hund’s first rule: to minimize the Coulomb
repulsion energy, electrons form a state with the maximum possible spin. Thus
for example the ion V3+(d2) should have spin S = 1; Mn2+(d5) a spin S = 5

2
etc.

When a transition metal (TM) ion is put into a crystal, the spherical symme-
try of an isolated ion is reduced, and consequently some of the orbital degeneracy
is lifted. This is called the splitting of levels due to a crystal field (CF).

M.J. Thornton and M. Ziese (Eds.): LNP 569, pp. 89–116, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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The modification of the 3d-level can be considered step by step by gradually
reducing the symmetry of the surroundings. If for example a TM ion is put into
a cubic crystal field (see Fig. 5.1), the 5-fold orbitally degenerate levels are split
as shown in Fig. 5.2: three levels go down in energy, forming triply degenerate
t2g-levels, and two degenerate eg-levels go up. The splitting of these levels ∆CF

is sometimes called 10Dq, especially in chemical literature.
The splitting of these levels can be understood by examining the form of the

d-wave functions for the eg orbitals:

dx2−y2 = 1√
2
(x2 − y2)

dz2 = 1√
6
(2z2 − x2 − y2) ,

(5.1)

i.e. they have an electron density directed towards the negatively charged ions
surrounding the TM ions, see Fig. 5.3. These ions are often called ligands, and
the resultant crystal field splitting of d-levels is called a ligand field.

x

y
z

Fig. 5.1. × – transition metal ion; ◦ – negative ligand ions (e.g. oxygen)

10

( )

CFDq

e

t

dg x    y z

2g xy xz yz

,22 d 2

d( d d,, )

3

2

5 CF

5 CF

∆

∆

∆

Fig. 5.2. Splitting of a 5-fold orbitally degenerate d-level of an isolated ion in an
octahedral crystal field of Fig. 5.1.

In contrast the three t2g orbitals have lobes directed along diagonals in be-
tween the ligands, as in Fig. 5.4.
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Fig. 5.3. The shape of the eg-wave functions: (a) dx2−y2 -orbital; (b) −dz2 -orbital
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Fig. 5.4. The shape of the t2g-wave functions: (a) dxy; (b) dxz and (c) dyz-orbitals

As seen from Figs. 5.3 and 5.4, the electron density in the eg-orbitals is
directed towards the negatively charged ligands, whereas those in t2g-levels in
between them. As a result the eg-orbitals will experience a stronger Coulomb
repulsion with ligands which raises their energies compared to those of the t2g-
levels. These simple considerations explain the crystal field splitting shown in
Fig. 5.2. Note also that there are different signs of the corresponding lobes of
d-functions, marked in Figs. 5.3 and 5.4. These are irrelevant for the Coulomb
interaction with ligands giving a point-charge contribution to the CF, but play
an important role further on.

There exists another contribution to the CF splitting besides the point charge
contribution described above. This is the so called covalency contribution, due
to a hybridization of the d-orbitals of the TM ion with the p-orbitals of the
ligands (oxygen) as illustrated in Fig. 5.5. Due to this hybridization a mixing
of these orbitals occurs, which causes the splitting of the d and p levels. It can
easily be seen that the eg-orbitals have a rather large overlap and hence a strong
hybridization with the p-orbitals of oxygen occurs (directed towards the TM
ion) leading to the so-called σ-orbitals, see Fig. 5.6. Consequently the mixing of
eg- and p-orbitals will be strong, and gives a corresponding upward shift of the
eg-levels,

δEeg ∼ t2pdσ

∆
. (5.2)
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∆CF

∆

eg

t2g

d

p

Fig. 5.5. The hybridization of d-levels of the TM ions and p-levels of the ligand leading
to the repulsion of levels and splitting of t2g and eg-levels.

This shift can be estimated by perturbation theory, assuming the p–d hybridiza-
tion (hopping matrix element) between the eg- and p-orbitals tpdσ is small com-
pared with the initial splitting of d- and p-levels ∆, see Fig. 5.5.

Similar considerations show that the hybridization of the t2g-orbitals with the
corresponding p-orbitals of the ligands is smaller than that of eg-orbitals. Indeed,
as seen clearly from Fig. 5.4, the t2g-orbitals are orthogonal to the p-orbitals and

(a) (b)

p

p

x

z

p
x

Fig. 5.6. Strong overlap and hybridization of dx2−y2 (a) and dz2 (b) orbitals with the
corresponding px and pz orbitals (σ-orbitals of ligands)
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directed towards the TM ions (here the signs of the t2g-wave functions play a
crucial role: by symmetry the overlap of pσ-orbitals with the t2g-orbitals is zero
as shown in Fig. 5.6). The remaining overlap between t2g orbitals and p-orbitals
shown in Fig. 5.7 is known as π-hybridization. This overlap is permitted by

+

-

-

+

p
z

+

-

xyd

- orbital

Fig. 5.7. An overlap and hybridization between one of the t2g-orbitals (dxz) with the
corresponding p-orbitals (pz) of a ligand (π-hybridization)

symmetry, but it is smaller than the σ-overlap of eg-orbitals shown in Fig. 5.6.
Since the t2g–p mixing is weaker and the upward shift of the t2g-levels shown in
Fig. 5.5 is smaller, then due to the point-charge contribution described above,
the eg levels in a CF are higher in energy than the t2g-levels. Thus both of these
contributions to the CF, Coulomb repulsion with ligands and p–d hybridization,
in typical cases lead to the same consequence: the splitting of d-levels in a cubic
(octahedral) crystal field with the form shown in Fig. 5.2. Typical values of the
splitting between t2g- and eg-levels in TM oxides are ∆CF (= 10Dq) � 1–2 eV.

Now, using the rule (Hund’s rule) formulated above, the ground state of a TM
ion may be understood. From the formal valence of a TM in a given compound,
the number of d-electrons left on the ion is found, and these electrons may be
put in the CF-split levels of Fig. 5.2 one after another following Hund’s rule, i.e.
putting as many electrons with parallel spins as possible.

So, supposing the total number of d-electrons nd ∼< 3, then simply the total
spin of the ion will be S = nd/2 (we ignore for a while the question of remaining
orbital degeneracy, see Sect. 5.3 below). However, if we have four d electrons
(nd = 4), a problem may arise. If the fourth electron is placed with the spin
parallel to those of the first three electrons, (i.e. according to Hund’s rule), then
we should place it on a higher-lying eg-level, see Fig. 5.8a, which costs us an
energy ∆CF . Alternatively, the fourth electron could be put on one of the lower
t2g-levels; but in this case because of the Pauli principle it should have the
opposite spin, i.e. we have to violate Hund’s first rule.

Both of these situations are met in practice. The first one leads to the so-
called high-spin state of a TM ion, whereas the second one to the low-spin
state. As seen from Fig. 5.8, the relative stability of one state with respect to
another is determined by the ratio of the CF splitting ∆CF and the Hund’s
rule stabilization energy (which may be described as an on-site ferromagnetic
exchange interaction −JH

∑
α,β SiαSiβ , where i is the site index and α, β are
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∆CF ∆CF

e

t

g

2g

(a) (b)
Fig. 5.8. High-spin state (a) and low-spin state (b) of an ion with 4 d-electron

indices of different d-orbitals1). If ∆CF > JH (or rather larger than the total
Hund’s rule stabilization energy, which for the case shown in Fig. 5.8 will be 3JH ,
the difference in the number of pairs of parallel spins between the configurations
in Fig. 5.8a and 5.8b), then it would be favourable to form a low-spin state,
occupying the lowest CF levels at the expense of Hund’s rule exchange. In the
opposite case the high-spin state will be stabilized.

In most cases the TM oxides have high-spin states (this is the case for
Mn3+(d4) whose configuration corresponds to that of Fig. 5.8a). However there
are notable exceptions. The ionic states of Co3+(d6), Ni3+ (d7) and Ru4+ (d4)
are often low level spin ones. Also by changing the parameters such as tempera-

(a) (b) (c)
Fig. 5.9. Different possible electronic configurations of ions Co3+ and Fe2+ (d6):
(a) low-level spin state; (b) intermediate spin state; (c) high-spin state

ture, pressure and composition of the material different spin states may appear,
even real phase transitions as the material crosses over from one state to an-
other may occur. This may be the situation in LaCoO3 [3] (for which even a
more complicated situation may exist, with the stabilization of an intermediate-
1 Strictly speaking, the Hund’s rule stabilization energy is not an ordinary exchange
interaction but is due to the difference of the direct Coulomb interaction of electrons
on different orbitals; for our purposes this subtle difference is however irrelevant.
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spin state [8]). Maybe the most interesting and the most important phenomena
of this kind occur in some of the Fe2+-containing compounds (including many
biologically important ones): probably the low spin–high spin transition of Fe2+

in such compounds plays an important role in functioning of such molecules and
compounds, in particular in red blood cells.

5.3 Orbital Degeneracy and Jahn–Teller Effect

Now going one step further and consider what happens when the point sym-
metry of a TM ion is further reduced. It was already noted (although we put
it for a while under the rug) that there may be situations when the detailed
occupation of one or another crystal field level is not uniquely determined. For
example, which particular t2g-orbitals would be occupied in the V4+(d1) ion in
an octahedral coordination, or which eg-orbital would the fourth d-electron go
into in a high-spin state of Mn3+(d4), see Fig. 5.8a.

There exists a very powerful and general theorem in quantum mechanics – the
Jahn–Teller theorem – which states, crudely speaking, that the only degeneracy
permitted in the ground state of any quantum system is the Kramers degeneracy.
This is connected with the invariance with respect to time inversion. In simple
terms it is the degeneracy of the spin up and down states (in systems without
magnetic order). All the other types of degeneracy including orbital degeneracy
(in Fig. 5.8a) are forbidden and should be lifted by the corresponding decrease
of symmetry which lifts this degeneracy. The essence of this theorem (which,
as Teller himself states in the preface to the book on the JT effect, [9], was
actually formulated by Landau) is that: there is always a perturbation reducing
the symmetry with a linear term representing the splitting of the degenerate
levels (an energy gain) and a quadratic term representing the energy loss, see
Fig. 5.10. Following from the standard perturbation theory of degenerate levels
in quantum mechanics, the energy of the system as a function of perturbation u
has indeed the form

E(u) = −gu+
Bu2

2
(5.3)

where the first term is the splitting of degenerate levels, and the second one is,
e.g., the elastic energy of a deformation reducing the symmetry.2

For example a regular octahedron may be deformed into a tetragonal to lift
the cubic symmetry, see Fig. 5.11. From similar considerations to the ones in
Sect. 5.2 it can be seen that the local elongation of O6-octahedra (Fig. 5.11a)
decreases the Coulomb energy of the orbital dz2 in comparison with dx2−y2 ,
whereas a local compression of the octahedra (Fig. 5.11b) decreases the energy
of the other orbital, dx2−y2 .
2 There may appear important complications in case of isolated JT centers: due to
quantum effects there may occur tunneling between the states in the right and the
left minima in Fig. 5.10. This gives rise to so-called vibronic effects, considered in
detail e.g. in [9]. In concentrated systems which we consider here, these effects are
usually not very important, and we will not discuss them in what follows.
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u

E

Fig. 5.10. The change of the total energy of a system with two degenerate levels as
a function of perturbation (deformation) u decreasing the symmetry and lifting the
degeneracy

(a) (b)

Fig. 5.11. Tetragonal deformation of O6 octahedra stabilizing one particular orbital:
(a) Elongation, stabilizing dz2 -orbital; (b) Compression, stabilizing dx2−y2 -orbital

This is the essence of the Jahn–Teller theorem in application to the transition
metal ions with an orbital degeneracy. As typically the neighbouring TM ions
have common ligands (e.g. oxygen), a local JT deformation around one centre
interacts with the corresponding deformation of its neighbours, see e.g. Fig. 5.12,
giving rise to correlated displacements. Consequently the symmetry of the crystal
as a whole is reduced. This usually occurs as a structural phase transition – one
of very few types (maybe the only one) of structural phase transitions for which
we know for sure their microscopic origin. This is known as the cooperative Jahn–
Teller effect (CJTE) or as orbital ordering. Due to the distortion a particular
orbital is occupied at each center, this may result in a ferrodistortion, or ferro-
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orbital ordering, e.g. when all the octahedra are elongated in one direction; this is
the situation in Mn ferrites or in Mn3O4. Local deformations are often correlated
in an antiferrodistortive fashion (Fig. 5.12); this is known as an antiferro-orbital
ordering.

A

B

Fig. 5.12. An illustration of correlation of local deformations around neighbouring JT
ions A and B, with the corresponding orbital occupation.

Orbital ordering due to the JT effect takes place in many compounds. Typical
ions displaying a strong JT effect are Mn3+(d4), Cr2+(d4), Cu2+(d9). In these
ions in octahedral surroundings there will be one electron (Mn3+, Cr2+) or one
hole (Cu2+) in a doubly degenerate eg-level. Due to the strong overlap with the p-
orbitals of ligands which in their turn strongly depend on the TM–O distance, the
splitting of the eg-levels with a shift of nn oxygens is rather strong, which gives
rise to a strong JT coupling. These ions are usually cited as typical JT ions. The
JT effect for Cu2+ is so strong that Cu2+ is never found in a regular octahedron,
but always in a strongly elongated one. Local distortion (elongation) around
Cu2+ can be so strong that one or two apex oxygens can “go to infinity” leaving
Cu2+ in a 5-fold (pyramid) or 4-fold (square) coordination. Such a coordination
is indeed typical for many Cu2+ compounds, the best known recent examples
being high-Tc cuprates like YBa2Cu3O7 etc. Thus the JT nature of Cu3+, even
if it may not be directly responsible for high-Tc superconductivity (although
the person who discovered it, K. A. Müller, believes that it is), is at least very
important for the stabilization of these rather unusual crystal structures.

The JT nature and corresponding orbital ordering is apparently very im-
portant in another nowadays popular class of compounds, namely the CMR
manganites. The basic undoped compound LaMnO3 contains a strong JT ion,
Mn3+(d4), and indeed there exists in LaMnO3 a structural phase transition at
∼ 800K caused by the CJTE and orbital ordering. The crude orbital structure
of LaMnO3 at room temperature is shown in Fig. 5.13 (the actual occupied or-
bitals are slightly different). Thus the undoped LaMnO3 has an antiferro-orbital
ordering with locally elongated octahedra packed so that the long axes alternate
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in the basal plane. Such a distortion is rather typical: it helps to minimize the
total strain of a crystal.

Fig. 5.13. Orbital structure and shifts of oxygens in undoped LaMnO3

As in strong JT ions we are dealing with the double orbital degeneracy and it
is convenient to describe the orbital structure by effective pseudospin operators
τ so that e.g. the state τz = + 1

2 corresponds to orbital 1 (e.g. dz2), and τz = − 1
2

to orbital 2 (dx2−y2). An arbitrary linear superposition of orbitals can always be
formed, and written as

|θ〉 = cos
θ

2
|dz2〉 + sin

θ

2
|dx2−y2〉 (5.4)

(coefficients are written in such a form to guarantee proper normalization of
the wave function |θ〉). The corresponding states can then be depicted in the
(τz, τx)−, or θ-plane, see Fig. 5.14. In Fig. 5.14 the state with |θ = 0〉 would
correspond to |dz2〉, |θ = π〉 = |dx2−y2〉. But what is more interesting, the states
obtained from |dz2〉, |dx2−y2〉 by the rotation of axes can be marked on this
diagram (as in a regular octahedron the directions x, y and z are equivalent).
Of course, not only an orbital dz2 extended in the z-direction can be formed,
but also equivalent orbitals dx2 and dy2 extended along the x and y-axes (such
orbitals are shown in Fig. 5.13). In Fig. 5.14 these orbitals would correspond to
|θ = ± 2

3π〉, and orthogonal orbitals dz2−x2 , dz2−y2 to |θ = ± 1
3π〉. Thus in this

language the orbital structure of LaMnO3 (shown in Fig. 5.13) would correspond
to a “canted” τ -antiferromagnetism, with one sublattice having pseudospins at
an angle θ = 2

3π and another at θ = − 2
3π (actual angles of sublattices in LaMnO3

are somewhat different, closer to � ±97◦).
Up to now only the strong JT ions with double eg-degeneracy have been dis-

cussed. There are, however, many materials with triply-degenerate t2g-orbitals:
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AB

C F

E D

θ τ

τ x

z

Fig. 5.14. τz–τx plane in which all the possible eg states can be conveniently visualized.
In this diagram the point A (θ = 0) corresponds to the orbital dz2 , B—to dx2−y2 , C
(θ = 2

3π)—to dx2 , D—to dz2−y2 , E (θ = − 2
3π)—to dy2 and F—to dz2−x2

for example compounds of V 4+(d1) or V 3+(d2). Such materials also display fea-
tures typical for the JT effect, however, there is one important difference between
the t2g-ions compared with the eg-ions. For the latter the real orbital moment is
quenched, for t2g-ions there exists a nonzero orbital moment leff = 1 and corre-
spondingly there is a spin–orbit interaction λl · s. This interaction can by itself
lift the orbital degeneracy, and in typical situations it leads to a distortion (which
in this case is usually called magnetostrictive distortion) opposite in sign to the
one caused by the JT effect. Thus different compounds containing t2g ions may
distort along different “routes”: in some the ground state is determined by the
JT distortion, but others develop “along the ls-route” and have a magnetostric-
tive distortion of the opposite sign. The second class of compounds typically
contains materials with Co2+(d7) and high-spin Fe2+(d6) ions. The character-
istic feature of compounds in which ls-coupling dominates and determines the
ground state, is a decrease of symmetry and a lifting of the degeneracy occurring
simultaneously with the magnetic ordering. In typical systems where the JT ef-
fect dominates, this happens independently and usually at higher temperatures
than any magnetic ordering.

There are a number of interesting features in magnetic oxides containing JT
ions, for further details see [6] and [10]. In the next section the mechanisms and
the main features of the exchange interaction in oxides are discussed in which
the orbital structure of corresponding ions plays a crucial role.

5.4 Exchange Interaction in Magnetic Insulators

Predominantly the electronic structure of isolated TM ions in crystals has been
considered, with their attributes in concentrated systems arising from an inter-
action between ions. One such effect already mentioned above is the cooperative
Jahn–Teller effect, or orbital ordering. More importantly in these systems are
the magnetic interactions leading to some kind of long-range magnetic ordering,
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and the possibility of electron transfer from site to site. This effect is responsible
for the transport properties seen in corresponding materials.

The simplest description of these properties should include the possibility
of electron hopping as well as the effect of the Coulomb interaction between
electrons. For a more complex model such details as the orbital structure of the
corresponding ions should be taken into account. The d-electrons in crystals are
described by the so-called Hubbard model:

H = −
∑

tijc
+
iσcjσ + U

∑
ni↑ni↓ ≡ H ′ +H0. (5.5)

Here the first term describes the hopping of d-electrons from site j to site i, and
the second term is the on-site Coulomb repulsion of d-electrons. This nondegen-
erate Hubbard model ignores such complications as a possible orbital degeneracy,
but it is sufficient for the description of both insulating and metallic states of
our system as well as for formulating the basics of the exchange interaction in
magnetic insulators.

As is well known, for weak interaction U 
 t the model (5.5) describes the
metallic state, with the band dispersion

H ′ =
∑

εkc
+
kσckσ , εk = −2t(cos kx + cos ky + cos kz) . (5.6)

(The simplest tight-binding approximation with only nearest neighbour hopping
is used and the spectrum is written for a simple cubic lattice.) In this case the
system would be metallic even for an exactly half-filled band with one electron
per site, n = 1, independent of the distance between corresponding sites.

It is clear however that for large enough distance between sites, which means
small hopping matrix element t, and for n = 1, the ground state should be in-
sulating with electrons localized each at its site. This state is called a Mott or
a Mott–Hubbard insulator, and it is due to the second term in the Hamilto-
nian (5.5), the on-site Coulomb repulsion U . If the overlap of the nn electron
wave functions is small enough so that t 
 U , care should be taken with the
second term in (5.5) which should be minimized if there is exactly one electron
per site and electrons are forbidden to hop onto the already occupied site. As a
result the ground state electrons will be localized, and creation of charge excita-
tions (transfer of an electron from its site to another one) would cost an energy
U (the repulsion of the transferred electron with the one already existing at this
site). The energy gain in this process would be ∼ t (both the extra electron
and the hole left at the first site can now move through the crystal and gain
corresponding kinetic energy of the order of their bandwidth (5.6), i.e. ∼ t), but
if U � t the energy loss of this process ∼ U exceeds the energy gain ∼ t, so that
the material would remain an insulator, with an energy gap Eg ∼ U − t. Es-
sentially, this is the physics of strongly correlated (strongly interacting) electron
systems.

There are a number of interesting and to a large extent still unsolved problems
in the physics of strongly correlated electron systems, see e.g. [11,12], but these
cannot be discussed here in detail. Therefore, we will concentrate mostly on
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the properties of such systems for a simple case, i.e. for an integral number of
electrons per site (e.g. n = 1) and for the case of a strong interaction U � t.

For n = 1 and U � t the ground state of our system is an insulator. Thus
there exists at each site a localized electron, i.e. a localized magnetic moment
with s = 1

2 . These moments of course somehow interact with one another so
that some kind of magnetic ordering should be established and spin degeneracy
would be lifted at low temperatures; otherwise the Nernst theorem would be
violated.

The main term of the Hamiltonian (5.5), the second term, leads to the for-
mation of localized moments but it does not lift this spin degeneracy. However,
the first term in (5.5), the electron hopping term, lifts this degeneracy (in second
order of perturbation theory in t/U 
 1) and leads to an antiferromagnetic ex-
change interaction between these localized magnetic moments. This result can be
obtained rigorously, see e.g. [13,12], but here we will use a simple form which will
be easily generalized later for more realistic cases of orbital degeneracy structure.

Consider two neighbouring sites with either parallel or antiparallel spins
shown in Fig. 5.15. Electrons initially localized each at its site want to delocalize

∆E = – 2t
U

2
∆E = 0

(a) (b)
Fig. 5.15. Two neighbouring sites with parallel (a) and antiparallel (b) spins. The
energy gain due to virtual hopping of an electron to a neighbouring site is shown

as much as possible by virtual hopping to neighbouring sites; by the Heisenberg
uncertainty principle this would decrease their kinetic energy. Such delocaliza-
tion may be caused by the first term of the Hamiltonian (5.5). In the situation
of Fig. 5.15a this process is, however, forbidden by the Pauli principle; on the
other hand for the antiparallel spins, Fig. 5.15b, this process is allowed. As a
result the first electron hops to a neighbouring site (with the matrix element t),
and then back. As usual in second order perturbation theory in quantum me-
chanics, this decreases the energy of the system, the energy gain being given
by ∆E = −2t2/U (the term H ′ in (5.5) acts twice, therefore we have t2 in the
numerator; in the denominator, as usual, the energy of the intermediate state
should stand and this is the energy of the repulsion of two electrons at the same
site U). The factor of 2 comes from the fact that the left spin can make an
“excursion” to the right and the right one to the left.

As a result the configuration with antiparallel spins is preferred relative to
the one with the parallel spins. This can be described by the effective exchange
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interaction

Heff = J
∑

SiSj , J =
2t2

U
. (5.7)

Virtual hopping of electrons leads to an antiferromagnetic Heisenberg exchange
interaction and this type of exchange mechanism is usually called superexchange
(sometimes also kinetic exchange). This is the main mechanism of exchange
interaction in magnetic insulators like transition metal oxides.

5.5 Charge-Transfer versus Mott–Hubbard Insulators

Before discussing the complications introduced by the realistic crystal and orbital
structure of materials, one more point should be discussed here. In contrast to the
idealized model (5.5), in real materials, e.g. in oxides, usually there are ligands
(oxygen ions) between TM ions. Consequently the hopping of d-electrons from
site to site (first term in (5.5)) occurs not directly but via oxygen p-orbitals.

In many cases the oxygen p-states can be excluded and this reduces the
description to the effective model (5.5); however, this is not always the case.
Accordingly all magnetic insulators may be divided into two big groups: Mott–
Hubbard insulators for which the description given above applies without any
restriction, and charge-transfer insulators in which one should treat oxygen p-
states in an apparent way.

The basic general Hamiltonian describing both the d-electrons of the TM
and the p-electrons of oxygen has the form

H =
∑

εdd
+
iσdiσ + εpp

+
jσpjσ + tpd(d+iσpjσ + h.c.) + Undi↑ndi↓ . (5.8)

Depending on the ratio of the charge-transfer excitation energy ∆ = εd − εp and
the Coulomb repulsion U , a division into two groups can be made.

If the oxygen p-levels lie deep enough, ∆ � U , the lowest charged excited
states are those corresponding to the transfer of a d-electron from one TM site
to another:

dn + dn −→ dn−1 + dn+1 .

This process as described above costs an energy U and for U � t gives the
Mott–Hubbard insulating state. Still even in this case real hopping occurs via
the oxygen p-states, but it can be excluded in perturbation theory, obtaining the
effective d–d hopping tdd = t = t2pd/∆. This is the d–d hopping t which would
enter the effective Hubbard model (5.5) and later the exchange integral (5.7).
This is typically seen in oxides of the early transition metals, like Ti and V.

On the other hand there may be situations, where the charge-transfer energy
∆ = εd − εp (the energy necessary to transfer an electron from the filled 2p-
level of O2− to a d-level of a neighbouring TM) is less than U . In this case the
lowest charge-carrying excitations will be just these excitations: the transfer of
an electron from oxygen to the TM, or the transfer of a hole to an oxygen:

dnp6 −→ dn+1p5 ≡ dn+1L
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(the notation L is very often used nowadays and means “ligand hole” – the state
with one electron on a ligand – here oxygen – missing).

According to this division we may draw a general phase diagram, the so called
Zaanen–Sawatzky–Allen (ZSA) [14] diagram, shown in Fig. 5.16. Many oxides of
late 3d-metals (Co, Ni, Cu) belong to this second category, the charge-transfer
insulators.
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Fig. 5.16. Zaanen–Sawatzky–Allen diagram showing the regions of Mott–Hubbard
(∆ > U) and charge-transfer (∆ < U) insulators

If n = 1 and the hopping t is small, then even with ∆ 
 U (but ∆ � t)
we would have a similar situation to the one described above: the ground state
will still be an insulator with electrons localized at the TM ions and with local-
ized magnetic moments; this is similar to conventional Mott insulators. In the
simplest cases such insulators will be antiferromagnetic, with the only difference
being the exchange integral J in (5.7) expressed as

J =
2t4pd

∆2(2∆+ Upp)
. (5.9)

(Here we take into account the lowest excited states participating in the vir-
tual electron hopping: the electrons that transfer from the oxygen p-shell to
the TM d-levels, see Fig. 5.17; we also included the effective repulsion of two
p-holes on the same oxygen Upp which contributes to the energy of one of the
excited states of Fig. 5.17.) Thus from the point of view of magnetic proper-
ties, charge-transfer insulators do not significantly differ from the conceptually
simpler Mott–Hubbard insulators, and for our purposes their difference could be
ignored. However, it should be realized that there may be differences in these
compounds in their excitation spectra, transport properties etc. Further effects
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1
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2

4

ε

εp

d

∆

Fig. 5.17. Virtual processes with the hopping of p-electrons from oxygen to two neigh-
bouring TM ions giving rise to an effective antiferromagnetic interaction in charge-
transfer insulators. The numbers at the wavy lines denote the sequence of virtual
transitions

are discussed in detail in Refs. [15,7] and used for the description of some real
materials, e.g. CrO2 in [16].

5.6 Goodenough–Kanamori–Anderson Rules

Until now when discussing the exchange interaction only the simplest case of a
nondegenerate d-orbital containing one electron has been considered. In reality,
as discussed in Sect. 2, d-electrons have a rather rich orbital structure: different
orientation, different overlap between themselves and with the p-states of their
ligands and possibly orbital degeneracy. All these details play an important role
in determining the corresponding exchange interaction and determine finally the
large variety of magnetic properties of TM insulators.

Rules called the Goodenough–Kanamori–Anderson (GKA) rules [3] were for-
mulated in order to predict the observed phenomena.

There are many details and particular cases to consider, so only the main
rules are formulated and the general approach explained; however, sometimes
the outcome is not clear without detailed calculations. Nevertheless, the general
trend is rather straightforward and results from the physics already described in
previous sections.

So for the simplest case shown in Fig. 5.18a the localized electrons on two
neighbouring TM ions occupy orbitals that are directed towards each other (or
overlapping with the same p-orbital of the intermediate ligand, Fig. 5.18b). Thus
the exchange interaction, according to (5.7) and (5.8) will be rather strong and
antiferromagnetic. Note that in a real situation the dd-overlap occurs usually via

1 2 1 2

(a)
0

(b)
Fig. 5.18. Overlap of d-orbitals of two transition metal ions 1 and 2, direct one (a) or
via p-orbital of the intermediate oxygen O (b)
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p-orbitals of intermediate ligands, Fig. 5.18b. In this case the geometry of the
corresponding bonds is crucial: the case of Fig. 5.18b represents what we call
180◦-exchange (the angle TM1–O–TM2 is 180◦). This is the first GKA rule:
the 180◦ exchange between filled orbitals (sometimes one speaks about half-filled
orbitals, having in mind that there is one electron at each orbital, not two) is
relatively strong and antiferromagnetic.

Now consider the situation with filled orbitals but with a 90◦-exchange path,
Fig. 5.19. Likewise in this case we are also dealing with the orbitals (shaded one
on TM1 ion and white on ion TM2) but interacting via the oxygen with a 90◦

exchange path 1–O–2. As discussed in the previous section, the actual electron
transfer occurs between the d-orbitals of the TM and the p-orbitals of oxygen. It
can be easily seen from Fig. 5.19 that two different orthogonal orbitals px and py

overlap with the corresponding d-orbitals of sites 1 and 2. As a result the virtual
electron hops as shown in Fig. 5.19b: one electron is transferred from the px-
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Fig. 5.19. The scheme of 90◦-exchange illustrating the second GKA rule. (a) The
relevant orbitals at the transition metals 1 and 2 (TM1 and TM2) and oxygen O;
(b) Virtual processes with the hopping of p-electrons trom a “corner” oxygen into two
neighbouring TM ions giving rise to the ferromagnetic interaction.

orbital to the TM1 ion, and another electron from a different orbital of the same
oxygen, py, goes into the TM2 ion. Thus in the excited intermediate state there
will be two electrons missing, or two p-holes present, on the oxygen. Depending
on the relative spin orientation of TM1 and TM2 the remaining p-electrons will
be either parallel (the case shown in Fig. 5.19b), or antiparallel. The energy of
this intermediate state is in the denominator of the corresponding energy, and as
usual the state with the lowest denominator is favoured. Accordingly, to Hund’s
rule (also valid for the oxygen ion), it is best to have the spins of the two oxygen
electrons, or two p-holes, parallel: thus the spins of TM1 and TM2 should be
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parallel too. As a result of such an exchange process a ferromagnetic interaction
between the moments of the TM ions 1 and 2 is favoured.

The energy difference between the parallel and antiparallel configurations is

J ∼ − t4pd

∆2

(
1

2∆+ Up − JH
− 1

2∆+ Up

)
� − t4pd

∆2(2∆+ Up)
JH

(2∆+ Up)
(5.10)

(cf. (5.9)), i.e. the 90◦ ferromagnetic exchange would contain a small factor
∼ JH/(2∆+Up). Thus the second GKA rule reads: 90◦-exchange between (half)-
filled orbitals is ferromagnetic and relatively weak.

To illustrate the third and final GKA rule, consider an electron hopping be-
tween the d-states, as in a simple Hubbard model, not between occupied orbitals,
as in Fig. 5.15b or Fig. 5.18, but between an occupied and an empty orbital. (In
real life such hopping goes still through the intermediate ligands but we can skip
this detail for a while.) Thus, imagine two TM ions with orbital ordering so that
there is no overlap between occupied orbitals, and the only overlap is between an
occupied and an empty one, see Fig. 5.20. In this figure the dx2−z2-orbital (white

+

+

++
–

–

–

–

Fig. 5.20. The scheme illustrating the origin of the ferromagnetic exchange for the
overlap between occupied and empty orbitals of neighbouring TM ions

one) is occupied at the site 1 and the dy2−z2-orbital (white) at the site 2. (This
orbital occupation is seen in KCuF3, with the only difference being, the orbitals
of one d-hole in Cu2+(d9) and not of a d-electron are those concerned.) Due to
the symmetry of the corresponding wave functions (note the signs in Fig. 5.20 !)
these orbitals are orthogonal, and there is no hopping between them. However
there is a possibility of electron hopping from the occupied dx2−z2-orbital of the
site 1 into an empty dx2 (shaded orbital) at the site 2. Such virtual hopping is
in principle allowed irrespective of the relative orientation of the spins of the
sites 1 and 2. However, as in the previous case, the energies of the intermedi-
ate states entering the denominators in second order perturbation theory would
differ, cf. Fig. 5.21. In this case, due to Hund’s rule, the energy gain in the inter-
mediate state is JH and the total exchange will be ferromagnetic. Again, as in
(5.10), the total exchange constant will be given by the corresponding difference
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site 1      site 2 1             2

∆E = – 2t
U

2

U – JH
∆E = – 2t2

(a) (b)
Fig. 5.21. Virtual hoppings from the occupied orbital on site 1 into an empty one
on site 2 and corresponding energy gains for the parallel (a) and antiparallel (b) spin
orientations

of the energies of the states 5.21a and 5.21b, i.e.

J � −2t2

U

JH

U
. (5.11)

(Taking into account JH < U and expanding the expression in Fig. 5.21 in
JH/U ; typical values for the TM oxides are JH ∼ 0.8 eV and U ∼ 3–5 eV.) Thus
we justify our third GKA rule: when the exchange is due to an overlap between
an occupied and an empty orbital, the resulting exchange is ferromagnetic and
relatively weak.

These main rules will be illustrated by a few examples, for instance, per-
ovskite materials with the basic structure shown in Fig. 5.22. This is probably
the simplest feasible structure: magnetic ions form a simple cubic lattice, and the
ligands (e.g. oxygen ions) are sitting in between them. The TM ions in this struc-

Fig. 5.22. Schematic crystal structure of perovskites; × — transition metal ions; ◦ —
oxygen (or other ligand) ions
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ture are surrounded by oxygen octahedra, connected by the common corners, so
that the superexchange paths TM–O–TM are 180◦ ones.3

Now according to the GKA rules formulated above, when both the eg-orbitals
of the TM ion are occupied, we have an antiferromagnetic nn interaction, and
as a result the magnetic ordering is of a simple two-sublattice type (the so-called
G-type antiferromagnetism). This is the situation, e.g., in KMnF3 (Mn2+, d5),
KNiF3 (Ni2+, d8), LaFeO3 (Fe3+, d5) etc.

For another example, as already mentioned, KCuF3 contains the typical JT
ion Cu2+(d9) with one hole in a doubly-degenerate eg-level. In this material the
orbital ordering shown in Fig. 5.23 is realized. As explained above, see Fig. 5.20,
an exchange interaction in the basal xy-plane is relatively weak and ferromag-

Fig. 5.23. One of two possible types of orbital ordering in KCuF3 (the other one differs
by the interchange of the occupied orbitals in the upper xy-plane)

netic. On the other hand, along the z-direction the lobes of occupied orbitals
are directed towards each other, which, according to the first GKA rule, re-
sults in a strong antiferromagnetic interaction in this direction. As a result the
magnetic structure shown in Fig. 5.23 is obtained: the ferromagnetic xy-planes
are coupled antiferromagnetically in the z-direction (this magnetic structure is
called A-type antiferromagnetism). Thus, due to a particular orbital ordering,
the magnetic structure in a compound close to a cubic one is rather anisotropic.
Moreover, as explained, the antiferromagnetic exchange in z-direction is much
stronger than the ferromagnetic one in xy-plane, so in effect KCuF3 has prop-
erties of a quasi-one-dimensional antiferromagnet (antiferromagnetic chains in
the z-direction with weak ferromagnetic coupling between them), and, despite
3 In reality often MO6-octahedra are tilted so that the exact angle TM–O–TM is less
than 180◦. In many cases this has important consequences; for our general discussion
however we ignore this complication
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being structurally a nearly cubic compound, is one of the best examples of one-
dimensional antiferromagnets.

Another very important example is given by the compound LaMnO3, the
basis of the CMR materials so popular nowadays. Its orbital structure has been
already shown in Fig. 5.13. The application of the GKA rules to this com-
pound is not as straightforward as above (see the detailed discussion in [7]), but
the outcome is the same: the type-A antiferromagnetic structure (ferromagnetic
planes stacked antiferromagnetically) is seen, with the important difference from
KCuF3 being, the ferromagnetic exchange in the basal plane is stronger than the
antiferromagnetic one between these planes.

The fact that due to the orbital ordering four of the nearest neighbours out
of six have ferromagnetic coupling may be important for the formation of the
ferromagnetic state in doped LaMnO3, although usually this is ascribed to the
double exchange mechanism, see below. This is definitely important, but it may
well be that the factor mentioned above (ferromagnetic coupling due to orbital
ordering) also plays some role in it.

In order to illustrate the second GKA rule, many materials with 90◦-exchange
which gives ferromagnetic interaction may be cited. Probably the simplest exam-
ples are provided by the one-dimensional structures containing Cu2+, shown in
Fig. 5.24. In these structures the angle Cu–O–Cu is often very close to 90◦, and

Cu

O

O

Cu

O

O

Cu

O

O

Cu

Fig. 5.24. The main structural motive of several compounds containing Cu2+ coupled
by the 90◦ Cu–O–Cu superexchange path

x2 − y2-like orbitals of Cu give rise to a (weak) ferromagnetic interaction. This
is seen, in particular, in the “telephone number” compound Ca14Cu24O41, in
which spin ladders coexist with the spin chains having the structure of Fig. 5.24,
and the exchange in these chains is known to be ferromagnetic.

Finally the compound CuGeO3 with a similar structure may be mentioned:
this is the first inorganic material showing a spin-Peierls transition. The angle
Cu–O–Cu is slightly larger than 90◦ (∼ 98◦) but is not enough to make the
exchange antiferromagnetic (as is needed for the spin-Peierls transition). This
presents a formidable problem, and special physical mechanisms are needed to
overcome the second GKA rule and make the exchange antiferromagnetic [17].
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5.7 Exchange Mechanism of Orbital Ordering

As discussed previously, even with a fixed lattice, superexchange leads not only
to magnetic, but also to orbital ordering [18,6]. In Sect. 5.3 the Jahn–Teller
theorem, the lifting of the orbital degeneracy and the resulting orbital ordering,
the distortion of the lattice and the effective intersite interaction due to this
mechanism was discussed. The general ideas developed in Sect. 5.6 will be applied
to a particular question: what are the possible mechanisms of orbital ordering
in systems with orbitally degenerate (Jahn–Teller) ions.

In order to shed light on this question, as shown in Fig. 5.25, imagine two
neighbouring TM ions with one electron on each, occupying doubly-degenerate
orbitals. Suppose for simplicity that only diagonal hoppings are allowed: those

∆E = 0 ∆E = – 2t
U U – J

2

H
– 2t

U

2
– 2t2

(a) (b) (c) (d)
Fig. 5.25. The scheme illustrating the tendency to simultaneous spin and orbital or-
dering due to superexchange mechanism for a doubly-degenerate orbitals

between orbitals 1 in a nn state and those between orbitals 2: t11 = t22 = t,
t12 = 0. If the arguments are generalized as shown in Figs. 5.15 and 5.21, the
energy gain due to virtual hopping of electrons onto neighbouring sites can easily
be calculated (as shown in Fig. 5.25). Immediately it can be seen that due to the
influence of the Hund’s rule interaction (which decreases the energy of the inter-
mediate state with two parallel spins), the state of Fig. 5.25c is favoured. Thus,
whereas for the nondegenerate case of Fig. 5.15 the superexchange leads to an
antiferromagnetic spin interaction, here the state with both the spin and orbital
ordering is stabilized; in this particular case the one with the ferromagnetic spin
ordering and “antiferro-orbital” one.

Again this treatment can be made rigourous and the effective exchange
Hamiltonian in contrast to (5.7), would contain terms SiSj , terms describing
orbital ordering τiτj and terms describing the coupling of the spin and orbital
degrees of freedom of the form SiSj · τiτj .

Due to the complicated shape of real eg-functions the actual form of the re-
sulting effective Hamiltonian for real systems is also much more complex [18], but
the main qualitative conclusions are similar: even with a fixed lattice (without
real electron–lattice interaction usually invoked to explain cooperative Jahn–
Teller ordering), in purely electronic terms the exchange interactions may cause
both the magnetic (spin) and orbital (Jahn–Teller) ordering. One can even speak
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here about the “Jahn–Teller ordering without Jahn–Teller interaction”. It should
be noted that in this mechanism the orbital and magnetic orderings are strongly
interrelated (although they can in general occur at different temperatures).

An interesting and important question arises as to the dominant mechanism
leading to orbital ordering in real materials. Of course, generally speaking, both
mechanisms (via electron–lattice interaction and via exchange interaction) are
present simultaneously. Usually they both lead to the same orbital structure, so
that experimentally it is very difficult to separate the contribution of different
mechanisms. Novel possibilities to resolve this problem appeared recently with
the development of a new calculation technique, the LDA + U method [19],
which gives the possibility to obtain orbitally ordered structures by either fixing
the undistorted lattice or taking into account the real lattice distortion. These
calculations can be visioned as “numerical experiments” which permit to isolate
the purely electronic contribution from the lattice one.

The experience gained so far [20] shows that indeed, correct orbital struc-
tures can be obtained even by fixing a symmetric lattice. A comparison of the
energies from corresponding solutions shows that about 60–70% of the total en-
ergy gain due to the orbital ordering is provided by the electronic (exchange)
contribution, the remaining 30–40% being gained when the lattice is released
and permit to relax to a new equilibrium position corresponding to the correct
orbital occupation. Thus from these calculations we can indeed conclude that
the electronic (exchange) contribution gives at least a comparable, but maybe
even dominant, contribution to the orbital ordering, as compared to the usu-
ally invoked electron–lattice interaction (although the latter is definitely also
important).

5.8 Doping of Magnetic Insulators; Double Exchange

Up to now we have dealt exclusively with magnetic insulators with an integer
number of electrons per TM ion. In this section the general case of doping (i.e.
changing the average occupation of the d-levels) in magnetic insulators will be
discussed.

A number of intriguing phenomena may be seen when doping: such as the
coexistence of different valence states of a TM e.g. magnetite Fe3O4 (formally
Fe2+ and Fe3+ ions) or NaV2O5 (V4+ and V5+). The different valence states
can order (“crystallize”) in the material, giving a charge-ordered (CO) state;
usually these CO states are insulating. However, there may be situations when
rapid exchange, or hopping, of electrons between different ions exists.

In contrast with Mott insulators with an integer number of electrons, here
the hopping does not in general require any extra excitation energy and can oc-
cur quite freely, giving rise to a metallic conductivity. Thus a metallic state can
be obtained with its magnetic properties differing strongly from the parent insu-
lating compounds. Typically a ferromagnetic (or at least “more ferromagnetic”)
spin arrangement is obtained.
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This phenomenon not only exists in doped or mixed-valence compounds, but
also in oxides with integer valence. If there is a large enough electron hopping
t and corresponding bandwidth W (∼ t) and if W ∼> U , a metallic state will
be obtained. Sometimes these states behave magnetically as Pauli paramagnets
(possibly with exchange enhancement) as in LaNiO3. But in other systems of this
type, especially those with small or negative charge-transfer gap (see Sect. 5.5),
the corresponding metallic state is still characterized by strong electron correla-
tions. In these cases magnetic ordering in such metallic states may exist; again
usually a ferromagnetic one is seen. This is the case in SrFeO3 or SrCoO3.

For the rest of this section we will discuss the origin of ferromagnetism in
doped Mott insulators. The most popular example of such a system nowadays
is provided by doped LaMnO3, e.g. La1−xSrxMnO3, where with increasing x
we go from the insulating state with A-type (layered) antiferromagnetism via a
complicated intermediate state (its exact nature is not known, see below) to a
ferromagnetic state for x ∼> 0.18. It is this last state which displays the property
of Colossal Magnetoresistance (CMR) and which attracts now such attention.

The basic concept used to explain the appearance of ferromagnetism in these
systems and its interplay with the metallic conductivity is through the dou-
ble exchange model, first developed by Zener [21], later put on firm theoretical
grounds by Anderson and Hasegawa [22] and by De Gennes [23]. See textbooks
and review articles [5,7] for a detailed description; we give here only the general
scheme without any details which can be found in these reviews.

The general idea for CMR is as follows. Suppose a lattice of localized elec-
trons, and add a certain (small) number of extra electrons or holes which can
in principle propagate through the crystal but these may also interact with the
background of localized spins. For the system La1−xSrxMnO3 our initial ionic
state for x = 0 is Mn3+(t32ge

1
g), and by substituting La by Sr we remove x

electrons, i.e. create x holes in the eg-band (or create x Mn4+(t32g) ions).
It may be easier to visualize (although more difficult to prepare experi-

mentally) the opposite situation: start with the material CaMnO3 containing
Mn4+(t32g) ions with three localized t2g-electrons (the spin of such ions is S = 3

2 ),
and dope it with a rare earth, e.g. Sm3+: by this we add a certain number of
d-electrons in eg-levels which in general can form a narrow band.

Such electrons in general can indeed move through the crystal (if we ignore
the potential of the impurity itself, all the positions of the extra electron are
equivalent). But if magnetic order of the background localized spins exists, it
can influence and maybe hinder the motion of doped charge carriers.

CaMnO3 is known to have a two-sublattice (G-type) antiferromagnetic
ground state in which all the nearest neighbours of a given site have spins op-
posite to it. However, in CaMnO3 a strong Hund’s rule coupling exists between
d-electrons, which (classically) forces the extra electron to have its spin parallel
to the localized spin of the site. As a result the situation shown in Fig. 5.26 will
take place: an extra electron at the site i should have spin up, but it cannot hop
to the neighbouring site j having spin down.
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i j

Fig. 5.26. An illustration of why the antiferromagnetic ordering hinders the motion of
an extra electron in case of strong Hund’s rule coupling

If localized spins are treated classically, it can be shown that for strong
Hund’s rule exchange JH > t (where t is the hopping matrix element of the
extra electron) the effective hopping is reduced,

tij −→ teff = t cos
θij

2
(5.12)

where θij is the angle between spins of the sites i and j. Thus for purely anti-
ferromagnetic ordering θij = π, and teff = 0. On the other hand, if the system
is made ferromagnetic, θij = 0, the electrons can move freely, teff = t.

The electrons hopping from site to site with the matrix element teff (5.12)
would form a band, with the spectrum (e.g. in cubic lattice)

ε(k) = −2teff (cos kx + cos ky + cos kz) (5.13)

and a (small) number of doped electrons would occupy the states at the bottom
of this band near εmin = −6teff . Thus whereas in the undoped materials, as
assumed, the system is antiferromagnetic due to the corresponding exchange
interaction of localized (here t2g) spins J , in the doped system a gain in energy
(kinetic energy of the doped carriers) by increasing teff can be obtained, i.e. by
making the system “more ferromagnetic”.

If now we assume that two sublattices form a canted structure with the angle
between sublattices θ, the total energy (per site) as a function of this angle may
be written in the quasiclassical approximation as

E(θ) = JS2 cos θ − 6tx cos
θ

2
. (5.14)

(Here we took into account the relations (5.7), (5.12), and assumed that x is
small so that all the electrons are at the bottom of corresponding band.) The
minimisation of the energy (5.14) in θ gives

cos
θ

2
=

3
2

t

JS2x , (5.15)

i.e. under the influence of doping (increasing x) the original antiferromagnetic
structure becomes canted, see Fig. 5.27, i.e. there will coexist both antiferromag-
netic and ferromagnetic components of the magnetic order.



114 D. Khomskii

θ

Fig. 5.27. The canted antiferromagnetic structure, with the antiferromagnetic compo-
nent ±Sz = ±S sin θ/2 and the ferromagnetic one Sx = S cos θ/2

With increasing x the canting angle θ would decrease and for

x > xc =
2
3
JS2

t
(5.16)

the magnetic order would become purely ferromagnetic. This is the standard
explanation for the change of the magnetic structure with doping. It is used for
example for the description of the appearance of ferromagnetism together with
the metallic conductivity in doped manganites.

There are many subtle points in this model. First of all, even in this qua-
siclassical treatment, taking result (5.11) we cannot yet say that the resulting
magnetic structure would be a two-sublattice canted antiferromagnetic one. Only
the local pitch angle θij is fixed by this treatment; one can however imagine an
alternative magnetic structure, e.g. the helicoidal one, with the same pitch angle.

More important may be the neglect of quantum effects in the above treat-
ment. The “ferromagnetic” on-site Hund’s rule coupling does not necessarily
require the spins of the extra electron and of localized spins to be parallel, as
in Fig. 5.26. These should form a state with maximum total spin, e.g. a triplet
state of the localized spin s = 1

2 , but this triplet can have a total z-projection
0, 1√

2
(1↑2↓ + 1↑2↓). It can be shown [24,25] that the motion of the extra elec-

tron is quantum-mechanically possible even on a purely antiferromagnetic back-
ground, albeit with a reduced bandwidth. The account of these factors modifies
the resulting phase diagram, leading e.g. to the appearance of a lower critical
concentration xc1 [25] below which the original antiferromagnetic structure is
undistorted.

But probably the most “dangerous” point in this treatment is the assumption
of spatial homogeneity of the system. Using formulae (5.14) and (5.16) the total
energy of the assumed homogeneous canted state can be calculated with the
minimum energy being

E(x) = −JS2 − 9
2

t2

JS2x
2 . (5.17)

However, in this state the compressibility κ−1 ∼ d2E/dx2 is negative [25] which
indicates an absolute instability of such a state towards phase separation, i.e.
creation of a state with an inhomogeneous distribution of both the extra charge
carriers and magnetic order. For instance, the ferromagnetic metallic “droplets”
may be formed in an antiferromagnetic insulating matrix [25].
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A detailed analysis of the resulting state requires also an account of the
long-range Coulomb interaction and lattice distortion; in addition in real ma-
nganites of the change of orbital ordering etc., and this is still not a tractable
problem. However, generally speaking the creation of a spatially inhomogeneous
state in lightly doped manganites, with the properties (e.g. in transport) of
percolation systems should be expected and only at higher doping level the
(more) homogeneous metallic and ferromagnetic state can be obtained, although
some inhomogeneity can still be present.

Doped manganites can be connected to a specific feature of orbital degeneracy
of eg-levels or eg-bands in which mobile electrons reside [26]. Probably this is
relevant for an interesting and not yet completely understood asymmetry in the
behaviour of doped manganites with x > 0.5 and x < 0.5. Whereas for overdoped
manganites (x > 0.5) a very stable insulating state with regular stripe structure
is formed, for x < 0.5 a ferromagnetic metallic state is obtained.

5.9 Concluding Remarks

In this short review the basic physical factors determining the electronic and
magnetic structure of magnetic oxides were explained. Of course, this chapter
cannot substitute a real textbook, but the main physical factors and mechanisms
determining the type of magnetic ordering and its interplay with the insulating
or metallic behaviour of corresponding materials were stressed.

There are always a lot of specific details important for particular materials.
All these details, however, do not invalidate the general conclusion that, generally
speaking, antiferromagnetism exists typically in insulating materials, and ferro-
magnetism is associated with metallic conductivity. There are of course some
exceptions to this rule, i.e. there exist ferromagnetic insulators, but these are
rare exceptions, and usually a special explanation is required, for further details
see the discussion in [7]. The general trend is the one formulated above: anti-
ferromagnetism prefers to coexist with the insulating state, and ferromagnetism
with the metallic one. The underlying mechanism responsible for this trend is
due to virtual hopping of electrons typically giving rise to a superexchange-
generated antiferromagnetism, whereas real motion of electrons stabilizes ferro-
magnetism by the double-exchange mechanism. This strong interplay between
magnetic structure and transport properties makes these systems so interesting
and promising for possible applications in spin electronics.
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6 Transport Properties
of Mixed-Valence Manganites

M. Viret

Service de Physique de l’État Condensé, CEA-Saclay, 91191 Gif/Yvette, France

Abstract. This chapter reviews electronic transport properties of manganites of the
type (La1−xCax)MnO3. Resistivity variations with composition, temperature and field
are presented in some detail and the different types of magnetoresistive effects measured
in these systems are analysed. Particular attention is given to ferromagnetic phases
which could potentially be used as magnetic sensors. A broader review paper “mixed
valence manganites” has been published by J.M.D. Coey, M. Viret and S. von Molnár
[1].

6.1 Electronic Structure

6.1.1 Ionic Model

The perovskite-structure oxides ABO3 with La on A sites and a closed-shell ion
on B sites (that of the 3d ions) are transparent insulators. Their Fermi level
falls in a gap between the valence bands composed of O2p and the bottom of
the empty conduction bands which are derived from the unoccupied 5d/6s or-
bitals of the La3+. Usually filled 3d10 levels lie below the top of the 2p band
whereas empty d0 levels lie near the top of the gap. The d-levels fall progres-
sively lower in energy on passing along the 3d series because of the increasing
nuclear charge. For 3dn cations, the Fermi level falls in the narrow d band,
and a lot of interesting physics flows from the strong electron correlations in
this band. The traditional approach has been to regard transition-metal oxides
as ionic compounds with well-defined 3d configurations incorporating an inte-
gral number of localized electrons per ion. This approach has been successful
in accounting for many aspects of their behaviour, including magnetic moment
formation. The model has considerable predictive power, and it is possible to
relate the parameters in the model to spectroscopic measurements. Electronic
properties of transition metal oxides are determined by an interplay of several
interactions of comparable magnitude, all of order 1 eV. Schematically, these are
(i) the Mott–Hubbard interaction Udd, which is the cost of creating a dn+1dn−1

charge excitation in an array of dn ions; (ii) the charge transfer interaction, Upd,
which is the cost of transferring an oxygen p electron to the neighbouring d
ion to create a p5dn+1 charge excitation from p6 dn, (iii) the transfer integral
t which determines the d-electron bandwidth, W , (iv) the Hund’s rule on-site
exchange interaction Uex which is the energy required to flip a d-electron spin
and (v) the crystal-field interaction ∆cf and the Jahn–Teller effect δJT. Besides
the classical Bloch–Wilson insulators where the Fermi level falls in a gap in the

M.J. Thornton and M. Ziese (Eds.): LNP 569, pp. 117–158, 2001.
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one-electron density of states, transition-metal oxides may be Mott–Hubbard or
charge-transfer insulators when the electron correlations are such that Udd > W
or Upd > W , respectively [2,3]. Most oxides of the early 3d transition metals
are Mott–Hubbard insulators and many oxides of the late 3d transition metals
are charge-transfer insulators. At the end of the 3d series, the charge transfer
gap may go to zero, and the oxides then become metals. In the middle of the
series where Udd ≈Udp the nature of the gap is less clear-cut. A summary of the
magnitudes of these interactions in LaMnO3 is given in table 6.1.

We consider further the electronic structure of manganese ions in B sites of
the perovskite structure, where they are coordinated by an octahedron of oxygen
neighbours, assuming for the moment that there is an integral number of d-
electrons per site. It is useful to focus here on the one-electron energy levels rather
than the multi-electron states, although they are closely related for the d4 ion
Mn3+. The interelectronic correlations which give rise to Hund’s rules for the free
ion are perturbed by the crystalline electrostatic field due to the oxygen anions.
The five d-orbitals, each of which can accommodate one electron of each spin,
are split by the octahedral crystal field into a group of three t2g − dxy, dyz, dzx−
orbitals which have their lobes oriented between the oxygen neighbours and
a group of two eg − dx2−y2 , dz2 orbitals which are directed towards the oxygen
neighbours. The former are obviously lower in energy because of the electrostatic
repulsion of electrons on neighbouring sites, and the crystal field splitting ∆cf
(≡ 10Dq) between the t2g and eg orbitals is of order 1.5 eV. The intra-atomic
correlations which give rise to Hund’s first rule (maximum S) is represented
on a one-electron energy diagram by introducing an energy splitting of ↑ and ↓
orbitals Uex, which is > ∆cf . Good evidence that Uex and ∆cf are quite similar in
magnitude in the perovskite-structure oxides is provided by the trivalent cobalt
in LaCoO3 which does not follow Hund’s first rule; it is in a low-spin state,
3d6, t62g with S = 0. Trivalent nickel in Ni-substituted manganites is also low-
spin [4]. Manganese ions are generally high-spin; the divalent ion, Mn2+, has a
very stable 3d5 configuration, a half-filled shell t32g ↑ e2g ↑ with S = 5/2 and a
spherically-symmetric electron density. Trivalent manganese is 3d4, t32g ↑ e1g ↑
with S = 2, whereas quadrivalent manganese is 3d3, t32g ↑ with S = 3/2. The
spin-only moments of these ions are 5µB, 4µB and 3µB, respectively.

A distortion of the oxygen octahedron lowers the symmetry of the cubic crys-
tal field in such a way that the centre of gravity of the t2glevels and the centre
of gravity of the eglevels is unchanged. There is therefore nothing to be gained
by Mn2+ or Mn4+ from such a distortion, but Mn3+ can lower its energy in pro-
portion to the distortion, and the corresponding penalty in elastic energy will
scale as the distortion squared, hence the marked tendency of d4 ions to distort
their octahedral environment in order to lower their energy. This is the Jahn–
Teller effect. For example, the tetragonal elongation of the octahedron found in
the O′-type structure will stabilize the dz2 orbital relative to the dx2−y2 orbital.
The t2gorbitals overlap relatively little with the orbitals of nearby oxygen or lan-
thanum ions, so these electrons tend to form a localized t32g ↑ ion core. However
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the eg orbitals overlap directly with the p orbitals of the oxygen neighbours, so
they tend to form a σ∗ antibonding band.

The end-member compounds such as LaMnO3 have a distorted perovskite
structure where the Fermi level falls in a gap between the two Jahn–Teller split
eg bands. However, intermediate compositions such as (La1−xCax)MnO3 with
a cubic structure have a partly-filled σ∗ band, extending in three dimensions.
These band electrons, which we refer to as the Zener electrons, hop from one
Mn site to another with spin memory. They are both conduction electrons and
mediators of the ferromagnetic exchange. Direct overlap of the t2g core electrons
of adjacent manganese ions leads to antiparallel exchange coupling, since only
the ↓ orbitals are empty [4].

The Hund’s rule exchange splitting Uex between the states with total spin 2
and 1 is evaluated taking s = 1/2 and S = 3/2 as the spins of the eg electrons
and the t32g ion core. The result Uex = JH(S + 1/2) gives 2JH as the splitting.
The value of Uex is found from optical conductivity data to be 2.0 eV [5] which
is slightly greater than ∆cf , as expected for a high spin ion. Hence JH = 1.0 eV.

Table 6.1. Estimates of characteristic energies in LaMnO3 (in eV)

Udd JH Upd ∆cf Upp δJT W = 12t Jij

4.0 1.0 4.5 1.8 7.0 0.6 1.0 0.001

Despite the success of the ionic model, electron transfer and orbital admix-
tures are more properly treated in a band model. Band structure determinations
involve extensive computations, and it is more difficult to build up an intuitive
understanding of the relation between electron number and physical properties.
Recent developments, particularly the local spin density approximation [6], of-
fer access to the magnetic ground-state and provide insight into the extent of
orbital mixing which is considerable in all transition-metal oxides. Most difficult
to treat accurately are the interatomic correlations.

6.1.2 Band Model

Unlike the ionic 4f levels, which are unbroadened by overlap and hybridization,
the 3d ionic levels acquire a substantial bandwidth, of order 1 eV, from overlap
with the neighboring orbitals. The bandwidth W = 2zt, where t is the transfer
integral and z is the number of manganese nearest neighbours is sensitive to
Mn-O distances and Mn-O-Mn bond angles [7]. In the double exchange model
it also depends on magnetic order, because the transfer integral depends on the
angle between neighbouring spins θ via t = t0cos(θ/2).

Band structure calculations take account of intra-atomic correlations in an
averaged way and they reproduce the one-electron energy level splittings of the
crystal field theory by admixture of p and d electron orbitals. Before discussing
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the electronic structure of materials which exhibit large negative magnetoresis-
tance, it is appropriate to consider first the end members. With this method, it
is possible to take different crystallographic unit cells (orthorhombic or cubic)
and different magnetic arrangements (ferromagnetic, antiferromagnetic or para-
magnetic) in order to calculate the free energy associated with each of them and
thereby evaluate which is the ground state. For each case, an electronic density
of states is obtained and the character of the wave functions (s, p, d) can be
evaluated. The different calculations agree very well on the main features. For
both end member compounds, Satpathy et al. find that the ionic descriptions
La3+Mn3+O2−3 and Ca2+Mn4+O2−3 are good approximations to reality. The cal-
culated magnetic moments for LaMnO3 are in quite good agreement with the
experimental values of 3.7− 3.9µB [8,9].

For mixed La-Ca compositions, there is not an integral number of d electrons
per atom and the bands are not completely filled. One may therefore expect the
compounds to become metallic in the absence of a distortion which creates dis-
tinct Mn3+ and Mn4+ sites. Pickett and Singh [10,11] modelled the x = 0.33
system by an ordered triple cell of general formula La2CaMn3O9incorporating
layers of (La-Ca-La) cations. The compound is found to be ferromagnetic with
an average moment of 3.51µB per formula unit. Two distinct Mn sites appear in
such a cell where some Mn have an A-site cation environment with La neighbours
only (MnLa−La) and the others have one plane of La and one plane of Ca sur-
rounding them (MnLa−Ca). The moments for the two Mn sites are very close and
the system should be viewed more in terms of hybridised spin-polarized Mn(3d)-
O(2p) bands rather than strong mixed valence. Also the local densities of states
are quite distinct for the two Mn sites. Near EF, (MnLa−Ca) bands constitute
a nearly “half metallic” pair (i.e. the d states are fully spin-polarized) whereas
(MnLa−La) bands have an equal number of spin up and down states. The mi-
nority spin occupation is therefore determined by shifts in potential arising from
nearby cation charges (La3+ neighbours create a more favourable environment
for an electron). The precise electronic structure is then expected to depend
sensitively on local environment effects such as the cation disorder, deviations
from stoichiometry and local strain. Pickett and Singh [11] also suggest that
charge disorder could lead to localisation of minority states (in fact MnLa−La

states) which would generate purely half metallic conduction without the ma-
jority carriers being localised. Above Tc, the absence of a net moment forces
charge carriers to go through differently oriented regions which, due to minor-
ity state localisation, would induce very poor conductivity (thermally activated
behaviour).

These calculations, and others [12], suggest that disorder plays a crucial role
in the electronic state of the manganites. This can lead to Anderson localisation
with a determinant role of the magnetisation [13,14]. In the partly-ferromagnetic
state, the homogeneous compounds have mixed electronic spin character at the
Fermi level. However, the interesting idea of preferential localisation of carriers
in the minority spin subband provides support for the full spin polarisation of
mobile charge carriers.
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Experimentally, there is good evidence of electron localization by potential
fluctuations. (LaMn)1−δO3 with δ = 0.01 and 0.05 are both insulators, although
they exhibit a large linear term in the heat capacity which suggests a high density
of states [15]. The Fermi level therefore lies below the mobility edge. It is also
apparent from the conductivity of cation-deficient and doped LaMnO3 that B-
site vacancies are more effective than A-site vacancies or A-site cation disorder
at localizing the electronic states.

6.1.3 Phase Separation

The conclusion that the presence of any small concentration of Zener electrons
in a planar antiferromagnet inevitably leads to canting [16] has been criticized
by Nagaev [17] and Mishra et al. [18]. The latter suggest that for realistic,
non-infinite values of the Hund’s rule coupling JH ≈ 1eV , the canting may
be supressed for certain carrier concentrations. Furthermore, it has been shown
by Arovas and Guinea that an inhomogeneous magnetic two-phase region is
to be expected in the de Gennes model between the ferromagnetic and anti-
ferromagnetic phase fields; the “canted” phase may actually be composed of
finely-imbricated nanoscale ferromagnetic and antiferromagnetic domains with
different electron concentrations [19]. Phase segregation has also been found in
a Kondo lattice model [20,21] where compositions with average electron density
around 0.9/Mn (x ≈ 0.1) spontaneously segregate into antiferromagnetic regions
with x = 1 and ferromagnetic regions with x = 0.8. Recent reviews of the experi-
mental and theoretical situation can be found in Ref. [22,23]. A better awareness
of the possibility that magnetic and crystallographic two-phase regions may sep-
arate single-phase fields could help to rationalize observations of magnetic and
crystallographic inhomogeneity in manganites.

Experimentally, neutron studies in inelastic and small angle configura-
tions [24,25] evidenced some degree of phase separation in lightly doped
La1−xCaxMnO3. In single crystals of the 6% doped composition, entities 1-2 nm
in size were observed but the small angle neutron scattering signal corresponds
only to a weak contrast in magnetisation. Thus, it seems that instead of
finely-imbricated ferromagnetic and antiferromagnetic regions, it is more appro-
priate to view the system as a canted antiferromagnet where the canting angle
varies by about 20◦ on a nanometer scale. The susceptibility of the x = 0.06
compound shows a sharp peak at TN (like that of LaMnO3 [26]) which is
characteristic of canted antiferromagnetism. In ferromagnetic La0.7Ca0.3MnO3
thin films, temperature dependent telegraphic noise was attributed to activation
of ferromagnetic clusters of nanometre size [27].

6.2 Resistivity and Magnetoresistance

In the first study of the mixed-valence manganese perovskites, van San-
ten and Jonker reported resistivity measurements on ceramic samples of
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(La1−xAx)MnO3 (A = Ba, Ca, Sr) as a function of temperature and com-
position [28,29]. Their main result was the striking correlation between the
magnitude of the resistivity and the magnetic state of the compounds. Outside
the ferromagnetic concentration range, resistivities are high and thermally
activated, but a resistance anomaly appears around Tc for the ferromagnetic
compositions, where there is a transition from thermally activated to metallic-
like conductivity. Representative modern data on a thin film is shown in
Fig. 6.1.

Fig. 6.1. Typical resistivity and magnetoresistance of a mixed-valence manganite show-
ing a metal-insulator transition. Data are for a thin film of (La0.7Ca0.3)MnO3 for which
Tc = 250 K (from [30])

When Volger [31] discovered the large negative magnetoresistance effect near
Tc in 1954, (Fig. 6.2) he showed it to be isotropic, i.e. independent of the relative
orientation of the current and the field, and frequency-dependent (he also made
the first measurements of Hall effect, thermopower and specific heat).

The single-crystal magnetoresistance measurements reported 15 years later
by a Canadian group for the (La1−xPbx)MnO3 system [32] showed the effect to
be quite substantial, with a 20% decrease in resistivity at 310 K in an applied
field of 1 T, but these results and those of Volger made little impression on the
broader scientific community, who were more aware of magnetic semiconductors
(like EuO), where huge magnetoresistance effects were seen at low temperature.
Twenty more years elapsed before the effect was rediscovered, at a time of intense
interest in using magnetoresistance in can be above room-temperature for some
compositions (e.g. La-Ba, La-Pb or La-Sr with x ≈ 0.3). The resistivity peak
temperature Tm practically coincides with Tc for crystals with x ≈ 0.3. The
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Fig. 6.2. (a) Resistivity, (b) magnetoresistance in 0.3 T and (c) magnetization of a
(La0.8Sr0.2)MnO3 ceramic [31]

isotropic negative magnetoresistive effect requires an applied field in excess of
1T, to approach saturation, as illustrated for the thin film of (La0.7Ca0.3)MnO3
in Fig. 6.1. The saturation magnetoresistance in the vicinity of Tc is bounded
by the drop in resistivity below Tc, which depends in turn on Tc itself [33,34], as
shown in Fig. 6.3.

The field-induced change in resistivity is comparable to the high-field resis-
tivity when the Curie point is close to ambient temperature, but it can be several
orders of magnitude greater when Tc lies at low temperature. The correlation
is shown in Fig. 6.4, where ρ(Tm)/ρ0 is plotted against 1/Tm. The resistivity of
any particular sample depends essentially on its magnetization.

A different type of magnetoresistance effect is the anisotropic magnetore-
sistance (AMR) which depends on the relative orientation of the current and
magnetization. It is a small effect related to the orbital moment, which has been
observed at low fields in films of tetragonal (La0.7Ca0.3)MnO3 [35].
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Fig. 6.3. Variation of the high-field giant magnetoresistance effect in mixed-valence
manganites at their Curie temperatures as a function of Tc , after [33]

6.2.1 Variations with Doping Level

The end-member LaMnO3 is a semiconductor, with reported values of the acti-
vation energy ranging from 0.10 to 0.36 eV [36]. The sample-dependent bandgap
which is small compared to the energy of the charge transfer excitation measured
optically (≈ 1eV) [37] or the bandgap measured by photoelectron spectroscopy
(≈ 1.3eV) [38] probably reflects doping of the material by defects and nonstoi-
chiometry, and localisation of the resulting carriers. Fig. 6.5 sketches the varia-
tion of resistivity and magnetic ordering temperatures for some La manganites
as a function of the proportion of Mn4+, which is varied by cation doping (or
cation deficiency). The correlation of the two phenomena is the basis for Zener’s
double exchange model. For antiferromagnetic phases, the Zener bandwidth is
zero and the insulating character dominates the transport. As the material be-
comes ferromagnetic, the conduction electrons hop from one Mn to another with
spin memory. The ferromagnetic interaction is therefore associated with high
electronic mobilities and low resistivities. Electronic transport follows the mag-
netic transitions, with very high resistivity for the x = 0 end member, minimum
resistivity obtained for x = 0.3 and higher resistivities for the other antiferro-
magnetic structures at x = 0.5. The number of conduction holes can be taken
as the number of Mn4+ introduced at low doping (small x) and the resistivity
might be expected to follow this number. Instead, it is found experimentally
that the conduction changes rather rapidly at a threshold corresponding to a
hole concentration of x ≈ 0.15, which suggests that localisation must play an
important role in the transport properties at low doping. Charge ordering, even
on a local scale, also promotes localisation; in the (La1−xSrx)MnO3 system, for
example, charge ordering occurs around x = 0.125 [40]. The electrical resistivity
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Fig. 6.4. Variation of the logarithm of the resistivity ratio ρm/ρ0 in thin films of
mixed-valence manganites at as a function of 1/Tm, o(La0.7Ca0.3)MnO3; squares:
(La0.8Sr0.2)MnO3; other points (La,Pr,Ca,Sr)MnO3 ; courtesy of K. Steenbeck

of a crystal with x = 0.15 is anisotropic, being a factor 2 - 5 lower for the current
in-plane rather than along the c-axis [41].

6.2.2 Temperature– and Field–Induced Resistive Transitions

Magnetic transitions are commonly observed by varying the temperature. In
mixed-valence manganites these can be of three types: Curie and Néel points
and transitions to a canted state. A schematic magnetic phase diagram is shown
in Fig. 6.6.

First Order Transitions

The largest magnetoresistive effects seem to accompany first order transitions.
Here, we will give an overview of the different resistive effects associated with
these magnetic transitions illustrated by a few examples.

Transitions at the W-W’ line in Fig. 6.6 are mostly second order but
compounds which have their resistivity peak at low temperature, Tm ≤ 100 K,
tend to exhibit thermal hysteresis [42,43,44,45,46,47]. In compounds with low
Curie points where charge ordering takes place above Tc, the competition
between Coulomb and ferromagnetic energies make the transition first order.
Neutron studies [48] established that the (Pr1−xCax)MnO3 system has charge-
ordered phases over the entire composition range. The Czech group noted
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Fig. 6.5. Magnetic ordering temperatures and resistivities as a function of Mn4+ con-
tent x (schematic) after [39]

the absence of the cubic structure normally associated with ferromagnetism
in these systems together with the absence of a drop in resistivity below
Tc. Low-temperature measurements have shown the existence of a first order
transition between a state of high thermally-activated resistivity and metallic-
like behaviour in (Pr0.7Ca0.26Sr0.04)MnO3 [49], (Nd0.7Ca0.2Sr0.1)MnO3 [50],
(Pr0.58La0.12Ca0.30)MnO3 [51], (Pr1−xCax)MnO3 [52,53] and (Nd0.7Sr0.3)MnO3
[54], the latter in thin film form being most likely oxygen non-stoichiometric.
Huge resistance ratios are related to cation size [50,55]. In fact, a good recipe
for making compounds with a first-order transition triggered by a magnetic field
consists of making an atomic mixture of two compounds, one of which presents
charge ordering down to low temperature with activated resistivity over the
entire range (for instance Pr0.7Ca0.3MnO3), and the other behaving “normally”
with a resistivity maximum near Tc (for instance Pr0.7Sr0.3MnO3). A judicious
choice of the proportion of each leads to a compound with borderline behaviour
in the thermally-activated regime where application of a strong magnetic field
may induce a phase transition. Such effects are generally hysteretic and the
removal of the applied field does not necessarily restore the initial state unless
the temperature is increased again (Fig. 6.7). The transition to the metallic
state can be sensitively changed by substituting 18O by 16O [56].

At a first-order irreversible transition from a semiconducting state, the resis-
tivity of (Pr0.70Ca0.26Sr0.04)MnO3, for example, was reduced by an impressive
11 orders of magnitude in 4 T at 30 K [49]. High-resolution electron microscopy
reveals that some of these compounds are inhomogeneous on a microscopic
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Fig. 6.6. Schematic magnetic phase diagram of (La1−xAx)MnO3 modified from [39].
The insulator-metal transition is hatched

scale [58]. Also, small angle neutron scattering indicates that magnetic inhomo-
geneities exist on a nanometer scale. It seems here that the resistive transitions
are due to the onset of tunneling between conducting grains through canted
insulating material. Huge magnetoresistive aftereffects have also been observed
in Pr0.7Ca0.3MnO3 single crystals [57]. There, an insulating state was obtained
with time when the sample, in the low-temperature zero field metallic state, is
driven to a temperature close to a transition in the resistive phase diagram. With
time, the magnetisation was observed to decrease slowly (like in magnetic vis-
cosity experiments in spin glasses) while the resistivity jumps very suddenly, at
some time, to unmeasurably high values as shown on Fig. 6.8. The explanation is
that the sample is in a metastable ferromagnetic state where small clusters are
temperature activated towards a antiferromagnetic or canted insulating state.
The dramatic resistivity behaviour was taken as evidence for percolation effects
in these compounds where time-induced resistive transitions reflect the breakage
of the last conduction percolation path [57].

Large magnetic field effects on the resistance are also observed for compounds
undergoing low-temperature magnetic transitions involving re-entrant antifer-
romagnetism or canting (T1) transitions Y-Y’ or Z-Z’ on Fig. 6.6. Resistance
changes in the opposite sense accompany the re-entrant antiferromagnetic tran-
sitions near x = 0.5 (Z-Z’ on Fig. 6.6). These are very pressure-sensitive and, in
certain cases, can be triggered by applied pressures of the order of 0.5 GPa [59].
Under pressure, the resistivity becomes strongly hysteretic thereby underlining
the first-order character of the transition. For example, (La0.5Ca0.5)MnO3 orders
first as a canted antiferromagnet, and at lower temperature as an antiferromag-
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Fig. 6.7. Resistivity versus magnetic field at T = 40 K in (Pr0.67Ca0.33)MnO3) cooled
from 300 to 40 K in zero field. The phase diagram in the (H, T ) plane is shown in
the inset. Notice the large hysteresis region in which the antiferromagnetic insulating
phase and the ferromagnetic metallic one can coexist [57].

netic insulator, with huge magnetoresistance around the W - W’ transition [60].
(R0.5Sr0.5)MnO3 shows a transition from ferromagnetic or paramagnetic metal
to paramagnetic insulator when R = Sm [61,62,63], but there are two magnetic
transitions when R = Pr [64] or Nd [65,66] and the antiferromagnetic ground
state may be charge-ordered. The Tsukuba group have studied the ferro - AF
transition in (Nd1−xSrx)MnO3 and (Sm1−xSrx)MnO3 near x = 0.5 [67] and in
({Nd,Sm}0.5Sr0.5)MnO3 single crystals [59]. The transition is accompanied by
charge ordering, cell distortion and re-entrant thermally activated conduction.
It is so strongly hysteretic that it can be completely suppressed by applied fields
(Fig. 6.9). In the case of {Nd0.25Sm0.75}0.5Sr0.5MnO3, a relatively low field (1 T)
was enough to wipe out the re-entrant behaviour and generate a 6 order of mag-
nitude resistivity decrease. At 4 K there is a similar irreversible field-induced
transition from a canted semiconducting state to a metastable ferromagnetic
metallic state, where the resistivity of (Pr0.6Ca0.4)MnO3 changes by more than
12 orders of magnitude [69]. Caignaert et al. showed that the passage to a canted
state through an antiferromagnetic state greatly enhances the magnitude of the
magnetoresistive effect at the transition [70]. The effect of many B-site substi-
tutions on the magnetoresistance at transitions occurring in manganites with
x ≈ 0.5 has been reported by the Caen group [71,72,62,73].

Another interesting observation concerns the variation of the magnetic tran-
sition temperature T1 between the antiferromagnetic and canted states (Y-Y’ in
Fig. 6.6) with applied fields. Application of a large magnetic field can greatly
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Fig. 6.8. Comparison between the time dependences of magnetic moment and resis-
tance in Pr0.67Ca0.33MnO3.The system was initially driven in the ferromagnetic metal-
lic at T = 45 K and H = 0.5 Tesla, as indicated in the text. Notice the absence of any
singularity in magnetic moment at the time τ0 = 4600s, where the resistance jumps by
several orders of magnitude

shift T1 to extend the conducting temperature range while affecting the para-
magnetic Curie temperature very little. The Caen group reported a shift from
75 K to 130 K in a 5 T field, while the paramagnetic Curie temperature remained
constant at 170 K in their (Pr0.7Sr0.05Ca0.25)MnO3 sample [74]. In other mag-
netic compounds of the same series, the cell parameters were found to vary at Tc
so as to minimise the distortion of the octahedron. This effect is more important
in compounds which do not present an intermediate magnetic structure (only
one magnetic ordering temperature in Fig. 6.6) [70], and is almost invisible when
the activated behaviour survives at low temperature. This is consistent with the
Jahn-Teller effect becoming dynamic for the conventional manganites below Tc
as electrons become more mobile.

Reversible Transitions

There are two types of reversible magnetic transitions which give rise to very
different resistive behaviours:

Néel points (X-X’ in Fig. 6.6) are generally not accompanied by major resis-
tivity changes, and in any case, activated behaviour persists through the transi-
tion to the antiferromagnetic state.

At the Curie point, where ferromagnetic order sets in for compounds with x
around 0.3, the resistivities present large anomalies with associated giant mag-
netoresistance (Z-Z’ on Fig. 6.6). A typical curve was shown in Fig.6.1 where a
high maximum is obtained near Tc. Electric and magnetic transitions are close
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Fig. 6.9. Temperature-dependence of the magnetisation, lattice parameters and resis-
tivity of (Nd0.5Sr0.5)MnO3 [68]. Tc and TCO are the ferromagnetic and charge ordering
transitions respectively

to one another but may not be completely superimposed. The peak in the re-
sistivity, especially of poorly-crystallized ceramics lies at the temperature Tm
somewhat below Tc [75,76], but in crystals these temperatures almost coincide
[77]. An interesting property is that they are both pressure and magnetic field
dependent, with increases of order 30 K/GPa and 10 K/T, respectively.

The metal-insulator transition in these manganites is atypical in that it is
the low-temperature phase which is metallic, and the high-temperature phase
which is insulating, rather than the reverse. This is due to the magnetic nature of
the transition; the double exchange setting in just below Tc drives the material
metallic. As an external field is applied, the magnetic order is enhanced and
the resistivity decreases. The field is most effective near Tc where the magnetic
susceptibility is maximum.

Numerous recent papers present magnetoresistance measurements at the Z-Z’
transition in different manganese oxide compounds. A large effect is essentially
linked to the presence of an adequate amount of Mn4+, around 30%, which can
be introduced by cation substitution or cation deficiency [78]. The effect is inhib-
ited by charge order. It increases as the resistivity ρmax in the localised state just
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above Tc increases (Fig. 6.3), but the residual resistivity ρ0 is usually a lower
bound on the minimum resistivity that can be achieved. Large applied fields
are needed to achieve colossal magnetoresistance effects in bulk and thin-film
crystals. Kusters et al. [79] decreased the resistance of their (Nd0.5Pb0.5)MnO3
crystal by two orders of magnitude near Tc = 180 K by applying an 11 T
field. Von Helmolt et al. reported large effects at room-temperature in oriented
(La0.67Ba0.33)MnO3 films [80] grown by pulsed laser deposition on SrTiO3 sub-
strates, followed by post-annealing treatments at 900◦C in order to raise Tc above
300 K. The resistive transition becomes sharper and the magnetoresistance ra-
tio defined as R(0)/R(H) at room-temperature reached 2.5 at µ0H = 6 T. The
effect can be much larger in compounds having a lower Curie temperature as
illustrated in Fig. 6.3. Jin et al. [81] at Bell grew (La0.67Ca0.33)MnO3 thin films
by pulsed laser deposition on LaAlO3 substrates which showed R(0)/R(H) of 5.6
at 100 K in an applied field µ0H = 6 T. Here a suitable post-annealing treatment
(900◦C under 3 atm of O2 for 1/2 hour) reduces the transition temperature and
greatly enhances the magnetoresistance ratio (defined as the ratio of the resis-
tance difference divided by the high-field resistance) to ‘colossal’ values of order
10000 at 110 K and 6 T [82]. It is reported that there is also an optimum film
thickness of about 100 nm [83] for the magnetoresistive effect, possibly related
to strain. The magnitude of the magnetoresistance effect is increased by substi-
tuting some Y for La, but the Curie temperature is decreased [84,85,42,86,87].
Again, the effect is optimized by appropriate annealing [88]. At constant doping,
the decrease in Curie temperature when a heavier rare earth is substituted for La
depends on the rare earth cation radius [89]. The high-field magnetoresistance
changes sign and becomes positive above 2Tc [87].

A comprehensive study of the influence of deposition conditions and post-
annealing treatments on the magnetoresistance was reported by the Maryland
group [90,54]. Thin films of (La0.67Ba0.33)MnO3 and (Nd0.7Sr0.3)MnO3 were syn-
thesised by pulsed laser deposition in a 40 Pa N2O atmosphere at temperatures
ranging from 615◦C to 815◦C. The films grown at lower temperatures exhibited
better crystallographic quality. The temperature at which the resistivity of the
films reaches its maximum is found to decrease with increasing deposition tem-
perature, and the resistance of that maximum is pushed to higher values. For the
post-annealing, both temperature and time of the treatment tend to increase the
temperature of the maximum and lower the peak resistivity. For the lower Curie
temperatures, R(0)/R(H) of the order of 100 can be reproducibly achieved in
8 T by the post-deposition treatments. The largest negative magnetoresistance
effects are correlated with substrate-induced lattice distortion [91,92]. Reducing
the oxygen content in (La0.67Ba0.33)MnO3−δ′ extends the temperature range in
which the large magnetoresistive effect is observed, and eventually makes the
compound insulating when δ′ = 0.2 [93]. Defects induced by irradiation with
Ar+ ions have a similar effect [94]. Prolonged annealing of (La1−xSrx)MnO3
first decreases, then increases the resistivity [95].

At first sight, the decrease in resistivity with applied magnetic fields seems
to be different above and below Tc. Fig. 6.10 shows a representative set of R(H)
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Fig. 6.10. Magnetic field effect in La0.7Ca0.3MnO3 thin films at different temperatures
above and below Tc = 240 K [80]

curves at different T . Above Tc, the magnetoresistive effect is not very large in
small fields, and the curves are bell-shaped initially with ∆ρ ∝ µ0H

2 [89,96,97]
or ∆ρ ∝ µ0M

2 [98]. In the vicinity of Tc, the resistivity drops rather quickly
at low fields and saturates at higher fields, but at low temperature, the effect is
again small. Just below Tc, ∆ρ varies roughly as

√
H [89], but others report that

the resistivity is nearly linear inH [99] or that conductivity is linear inH [100]. In
fact, what seems to be qualitatively different behaviour may just reflect the effect
of the magnetization. In the paramagnetic state,M ∝ H, hence ∆ρ ∝ µ0H

2. On
the critical isotherm, M ∝ H1/δ where δ ≈ 3 − 5, hence ∆ρ ∝ µ0H

2/δ. Below
Tc, M depends nonlinearly on H; an exponential variation ∆ρ ∝ exp[−H/H0]
has been reported [101]. A single scaling function ∆ρ ∝ exp[(−M/M0)2] can
reproduce the field and temperature dependence both above and below Tc [102].
The field-dependence may be best rationalized in terms of a straight resistor in
series with a magnetoconductor, which varies as H2 above Tc and as H below
Tc [103].

Most magnetoresistance measurements have been made on thin films with
the field H applied in the film plane, so there is no demagnetizing effect. Nev-
ertheless, it is important to understand which of the magnetic vectors, B, H
or M produces the magnetoresistance phenomena. Insofar as conduction is by
spin-polarized electrons, the important quantity appears to be the magnitude
of the magnetization Mav averaged over the spin-diffusion length λs, which is
expected to be a multiple of the mean free path λ, probably a few tens of in-
teratomic spacings. Well above Tc, where the magnetisation follows a Brillouin
function which is linear in field at low fields, Mav ≈ M (= 0 in zero field). Mag-
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netization varies very quickly around Tc, where small fields have a large effect
(high magnetic susceptibility). Below Tc in the multidomain ferromagnetic state
Mav ≈ Ms, since the domain size � λs and the domain wall width is also likely
to be greater than λs. At temperatures well below Tc, the spontaneous magneti-
sation in compounds with x around 0.3 is close to the saturation value and the
field effect on the magnetisation at the scale of the spin-diffusion length is min-
imal, the saturation of M being only due to domain wall motion. However, the
magnetization is sharply inhomogeneous near grain boundaries in a ferromag-
netic polycrystal, and there Mav can be much less than Ms for those electrons
crossing from one grain to the next. Also, effects of spin injection through grain
boundaries can greatly affect the low-temperature MR. This effect is discussed
below.

Ferromagnetic State

The ferromagnetic state in compounds with x ≈ 0.3 is metallic in the sense
that the resistivity is practically temperature-independent, with a slight posi-
tive temperature coefficient. Experimental evidence for metallic behaviour comes
from power-law dependences of R at low-temperature where T 2 [104,105] or T 2.5

[106] increases have been reported. These could be ascribed to correlation effects
in a degenerate electron gas [107], but there may also be a contribution from
spin-wave scattering. In fact, the coefficient of the T 2 term derived from the
measurements of Urushibara on single crystals, which is a measure of the cor-
relation strength, is comparable to values for other highly correlated electron
metals such as CeAl3 and CeCu2Si2 [108]. However, only in a few compounds
such as (La0.7Sr0.3)MnO3 does the magnitude of the residual resistivity have the
value expected of a metal, ρ0 < 1.510−6Ωm, applying the criterion that the mean
free path should exceed the interatomic spacing [109]. In other compounds, the
residual resistivity can be up to ten orders of magnitude greater (as shown in
Fig. 6.11), making them extremely peculiar metals. In some cases, a slight up-
turn in ρ is reported below 10-20 K [31,110,33,111] which can be suppressed by
applied field or pressure. The resistivity in the ‘bad’ metallic state is unusually
sensitive to pressure, with variations of ρ0 of one order of magnitude per GPa
[113,110]. It is also dependent on the substrate and preparation conditions for
thin films which may distort the lattice [114,91], and depends critically on the
grain size [115,116,117] and grain-boundary angle [118]. A variation in ρ0 from
3× 10−6 to 2× 10−3Ωm for (La0.67Ca0.33)MnO3 has been ascribed by Gupta et
al. [116] to spin-dependent scattering at grain boundaries as the crystallite size
decreases from bulk to 3 µm. Resistivities as high as 8 × 103Ωm are ascribed
by Coey et al. to intrinsic magnetic barriers between misaligned ferromagnetic
regions which are in the nanometer size range [112]. Large reductions in ρ0 are
associated with increases in reduced magnetization [119], and it is likely that
canted Mn4+ spins in the low temperature ferromagnetic state may cause the
lack of magnetic saturation [120]. Very direct evidence of spin-dependent scat-
tering in the ferromagnetic metallic state has been provided by the resistive
behaviour of bilayers and heterostructures described below.
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Fig. 6.11. Resistivity as a function of temperature for films of mixed-valence mangan-
ites with x = 0.3. after [112]

Grain Boundary and Tunneling Effects

Size effects are important in fine-grained polycrystals. The high-field, colossal
magnetoresistance is independent of grain size [121], but there is a low-field
magnetoresistance at all temperatures below Tc in polycrystalline material which
is absent in single crystals (Fig. 6.12).

The low-field effect is distinctly different from colossal magnetoresistance.
It increases with decreasing grain size, and grows rapidly at low temperature.
The effect, which has been observed in polycrystalline ceramics [117,116,123,124]
and thin films [125,126,103,39] is attributed to spin-dependent grain boundary
scattering. The boundaries are about 1 nm wide. The grain boundary scattering
has been isolated in experiments on manganite strips on a bicrystal substrate
[127,128]. Domain wall scattering varies as δ−2

w , hence the narrow “domain walls”
that occur at grain boundaries may be much more efficient at scattering elec-
trons than the wide Bloch walls that occur in the bulk [129]. Unlike the high-
field colossal magnetoresistance which is an intrinsic property, usually greatest
near Tc, the low-field response reflects the micromagnetic state of the sample
and peaks at the coercive field. The effect can be most directly seen in pressed
powder compacts of manganites (Fig. 6.13) [130] and other half-metallic ferro-
magnets [131,132], where the powder magnetoresistance (PMR) is entirely due
to interparticle contacts. It is associated with the degree of alignment of the
magnetization of the grains or particles, but it may be sensitive to paramagnetic
or quenched spin disorder at grain boundaries [116,123,133]. Surface spin disor-
der can arise because absent bonds weaken the exchange interactions of atoms in
the interface, or alter the balance of ferromagnetic and antiferromagnetic inter-
actions. A different explanation of the low-field magnetoresistance of tetragonal
(La0.6Ca0.3)MnO3 films in terms of domains has been given by O’Donnell [134].
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Fig. 6.12. Comparison of the negative magnetoresistance of single-crystal and poly-
crystalline (La1−xSrx)MnO3 [122]

Whatever the explanation, the low-field effect could be more significant for ap-
plications than the intrinsic colossal magnetoresistance, but the effects reported
at room temperature so far are very small [126].

Sandwich structures and superlattices have been prepared from the ferro-
magnetic manganites with nonmagnetic spacer layers, that may be insulating,
metallic or superconducting. In superlattices of (La0.67Ca0.33)MnO3 and the fer-
romagnetic metallic oxide SrRuO3 (Tc = 162 K), enhancement of the magnetore-
sistance effect in the ferromagnetic state at low temperatures in the superlattice
as compared to the pure film is ascribed to spin-dependent scattering at the
interfaces [135].

Tunnel spin valves, where the current is forced through an insulating barrier
that separates two ferromagnetic layers, are appropriate systems for an enhanced
magnetoresistive response since small applied fields can modify the magnetic con-
figuration of the device. The barrier decouples the ferromagnetic electrodes so
that their relative orientation can easily be changed. Trilayers can be fabricated
for current perpendicular to the plane (cpp) geometry using conventional UV
lithography. In tunnel junctions with fully-polarized electrodes, electron tun-
neling - supposedly without spin flip - should be forbidden when the electodes
have antiparallel magnetization. The IBM group first reported magnetoresis-
tive effects as large as 80 % in (La0.7Sr0.3)MnO3/SrTiO3/(La0.7Sr0.3)MnO3
or (La0.7Ca0.3)MnO3/SrTiO3/(La0.7Ca0.3)MnO3 trilayers at 4.2 K [136,137]. A
similar structure where a 3 nm thick SrTiO3 layer separates 25 and 33 nm thick
manganite layers, has been measured by Viret et al. [138]. Charge carriers were
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Fig. 6.13. Magnetoresistance of a (La0.67Ca0.33)MnO3 powder compact at 77 K. The
initial magnetization curve is shown, together with the hysteresis which arises from the
hysteresis of the ferromagnetic powder [130]

forced to tunnel between a (La0.7Sr0.3)MnO3 bottom stripe into a 6 µm side
(La0.7Sr0.3)MnO3 square through the 3 nm thick insulator. Figure 6.14 shows a
magnetoresistance curve at 4.2 K where the nominal resistance is multiplied by
5.5 when the top square flips into the antiparallel configuration. This magnetore-
sistive effect at such low fields (of the order of 10 mT) is the highest yet reported
in any magnetoresistive system. Effects of this magnitude demonstrate the high
degree of spin polarization of electrons at the Fermi level in mixed-valence man-
ganites. A quantitative estimate of the spin polarization can be made using the
relation [139] (σ↑ − σ↓)/(σ↑ + σ↓) = (1− 2a)2, where σ↑ and σ↓ are the conduc-
tances in the parallel and antiparallel states, and a is the proportion of spin-up
carriers. A 450% magnetoresistive effect gives a = 0.91 and a polarization of
83%. This is much higher than in any of the 3d metals or alloys, where the
largest polarization of tunnelling electrons is 40%, for Fe [139].

The magnetoresistance of tunnel spin valves falls dramatically as the tem-
perature is raised (Fig. 6.15). This was explained by the presence of an oxygen-
deficient layer at the SrTiO3/(La0.7Sr0.3)MnO3 interface which has a lower Curie
temperature than the bulk of the (La0.7Sr0.3)MnO3 and induces spin flipping
which decreases the magnetoresistive effects. Measurements of neutron reflec-
tivity with polarisation analysis confirm that interfaces between manganite elec-
trodes and both the substrate and the barrier are magnetically affected [140,141].
A reduced magnetisation has been measured down to several nm inside the man-
ganite. A reduced magnetisation leads to decreased spin polarisation at the in-
terface with the insulating barrier and hence a reduced magnetic effect on the
tunneling. Presumably, the oxygen is off-stoichiometry in this interface which af-
fects magnetic order and Curie temperatures. Tunnel magnetoresistance effects
are greatly suppressed above the interface ordering temperature leading to a
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Fig. 6.14. Magnetoresistance ratio for a sandwich structure of two (La0.67Sr0.33)MnO3

films separated by a 3 nm layer of SrTiO3. The magnetization of the two magnetic layers
switch at different fields [138]
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Fig. 6.15. Evolution of the magnetoresistive effect with temperature in tunnel spin
valves. The dramatic decrease of the TMR amplitude is attributed to the effect of a
magnetically reduced interface [138].

maximum in the R(T ) characteristic of the junctions. Therefore, it appears cru-
cial to be able to better control the magnetisation of the interface layer in order
to achieve a large effect at room temperature. Another problem in these systems
is the reproducibility of the magnetic switching [140]. Because the magnetoresis-
tive effect is so large, any spin misalignment in the electrodes in the antiparallel
configuration produces a parallel conduction channel which shortcuts the large
induced resistance. This effect is particularly important in micron-size electrodes
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where micromagnetic configurations are quite complex. This could also greatly
enhance the problem of noise of magnetic origin in potential devices.

Paramagnetic State

As in the case of the high-temperature superconductors, the physical properties
of the manganites in the region above the transition temperature are anomalous.
Transport above Tc is still a matter of controversy as numerous groups have re-
ported different behaviour. Data on compounds with x ≈ 0.3 were first fitted
with a purely activated law, ρ = ρ∞ exp(E0/kT ), where the gap E0 is typically
0.1 eV [79,30,100]. There is also evidence for a ρ ∝ T exp(E0/kT ) behaviour
over an extended temperature range [105,114,92]. Others find that Mott’s vari-
able range hopping (VRH) expression, ρ = ρ∞ exp((T0/T )1/4) is appropriate
[142,112,96,143,144,14,106]. The simple activation law could indicate the open-
ing of a gap at the Fermi level above Tc. Photoemission data support the view
that a small band gap appears at Tc in (La0.7Ca0.3)MnO3 [145,146] (although
the manganite surface probed in photoemission is unrepresentative of the bulk
[147]), and there is evidence from tunnelling spectroscopy [148] and Hall effect
[149] for a change in the density of states at Tc. However, it is difficult to jus-
tify a gap over a range of Mn4+ concentrations from x = 0.2 to x = 0.4 in
the absence of any change in structure. Moreover, Hundley et al. [30] could not
interpret their activated behaviour as excitation to extended states, since the
measured mobility was so small that a mean free path could not be defined.
Others who found ρ = ρ∞ exp(E0/kT ) activated behaviour did not have Hall or
other transport results to identify the form of transport [150,100].

Fig. 6.16. Schematic picture of (a) a small dielectric polaron, (b) a Jahn-Teller polaron
and (c) a magnetic (spin) polaron
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A common view is that the carriers form small dielectric polarons (Fig. 6.16)
[151,152,79]. There is some direct evidence of small polaron formation in the
distribution of Mn - O bond lengths contained in the pair distribution function
of (La1−xCax)MnO3 with x = 0.12 [153]. The hopping motion of polarons leads
to a resistivity of the form ρ = (kT/ne2D) exp(E0/kT ) where n is the carrier
density and D is the polaron diffusion constant. Here, there may be contribu-
tions to E0 of magnetic, elastic (Jahn-Teller) or coulombic origin. Park et al.
[145] suggest that strong polaron effects lead to a charge fluctuation energy of
about 1.5 eV above Tc, but that the Jahn-Teller effect is less significant than
the normal small-polaron contribution. Good agreement with data was reported
for the simple form ρ ∝ T exp(E0/kT ), with E0 = c+ Etrap, where Etrap is the
trapping energy [154,105]. Another related form of polaron conduction, in which
the prefactor is also dependent on the state of magnetization, was used to ex-
tract the lattice polaron trapping energy ≈ 0.35 eV [114]. Remarkably, this value
remained constant for a variety of films having different magnetic and transport
properties. Perhaps the most extended high temperature measurements on sin-
gle crystals and thin films of the Ca and Sr doped La-manganites are those of
Snyder et al. [105]. Their resistivity data, shown in Fig. 6.17, follow the small
polaron hopping law very well. These authors show that at least part of the
hopping energy must come from lattice distortions, as can be seen in the abrupt
change from temperature independent to activated transport near the 750 K
structural transition in the inset of Fig. 6.17.

Another plausible view is that the presence of magnetic disorder above Tc
together with the intrinsic variations in the Coulomb potential due to the pres-
ence of A3+ and A2+ ions in the lattice leads to the formation of a mobility edge

Fig. 6.17. High temperature resistivity (warming and cooling) of (La0.67Ca0.33)MnO3

film and crystal in zero field after [105]
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[155]. At high temperatures, carriers will be excited from the Fermi energy EF
to the mobility edge Em, giving an activated conductivity. At lower tempera-
tures it may be possible to discern a nearest-neighbour hopping process with a
lower activation energy, which transforms into uncorrelated variable range hop-
ping ln ρ ∝ T−1/4 when the available phonon energy is so small as to make
longer-range hops necessary to find a site sufficiently close in energy for hopping
to occur. This view is not incompatible with small dielectric polaron formation
since variable-range hopping of small polarons also leads to ln ρ ∝ T−1/4 [156].
For highly-correlated electron systems a Coulomb gap appears at EF and the
hopping law is then ln ρ ∝ T−1/2 at temperatures below the correlation gap [157].
Experimental evidence for VRH behaviour above Tc is presented in Fig. 6.18 in
a range of ferromagnetic manganites with x ≈ 0.3. Resistivity data there can
usually be fitted with a power law between 1/2 and 1/4. There is also evidence
of VRH behaviour when x ≈ 0.5 [64].

Fig. 6.18. Plot of the parameter T
1/4
0 versus temperature showing variable range hop-

ping behaviour above Tc in a range of ceramic samples of x = 0.3 compounds (#
indicates thin films)

An important question in the manganites is the existance of a magnetic con-
tribution to the localising random potential. A Coulomb random potential may
be caused by substitution or vacancies on A or B sites. For instance, the electron
occupancy corresponding to 30% Mn4+ can be achieved in three ways, by diva-
lent cation substitution with x = 0.3, by lanthanum deficiency with z = 0.077
or by nonstoichiometry with δ = 0.048. All three compounds are ferromagnets,
but only the first two are metals. Activated conduction is measured down to
the lowest temperatures in ferromagnetic (LaMn)0.95O3 [158,159]. This demon-
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strates that the Coulomb random potential due to the B-site (manganese) va-
cancies is well able to produce localisation even in the absence of a fluctuating
magnetic potential. In cation-deficient La1−zMnO3, where there are only A-site
vacancies, the carriers are localised when z < 0.05, whether in the antiferromag-
netic phase (z < 0.03) or in the ferromagnetic phase (0.03 < z < 0.05) [160].
However, the ferromagnet with z ≈ 0.05 is a metal [78]. Therefore, for similar
Mn3+/Mn4+ ratios [161,162], B-site vacancies localise the eg electrons more ef-
fectively than A-site vacancies. In the substituted lanthanum compounds with
A-site disorder (La3+1−xA

2+
x )MnO3, the random potential variations ∆V due to

divalent and trivalent A-site ions are insufficient to produce localisation in the
ferromagnetic state when x = 0.3. This indicates that the ratio of ∆V to the
occupied σ∗ bandwidth W is less than the critical value for ‘diagonal’ or Ander-
son localisation. However when a smaller rare earth, such as Pr or Sm replaces
La, a ferromagnetic insulating state is sometimes found. This may be associ-
ated with a decreased Mn-O-Mn bond angle which reduces the transfer integral
and bandwidth, hence tipping ∆V/W above the value necessary for localisation
[109].

Polarons

We have seen that the manganites with x ≈ 0.3 which are ferromagnetic metals
below Tc generally exhibit activated conduction above Tc. Setting aside some
minor changes in lattice parameters at Tc, the metal-nonmetal transition must
evidently be magnetically driven. It is very likely that the carriers polarise their
immediate environment creating short-range magnetic correlations. The large
effective mass and small activation energy of the carriers indicate polaron for-
mation. We have discussed the possibility that these polarons are normal small
dielectric polarons where the electron bears with it a dilatation of the MnO6
octahedron. The possibility that these polarons form bound pairs (bipolarons)
above Tc has been discussed in ref. [163].

Other possibilities are Jahn-Teller polarons where the electron carries with it
an axial distortion of the MnO6 octahedron, and magnetic polarons where there
is a ferromagnetic polarisation of the surrounding Mn core spins (Fig. 6.16).
The influence of an applied field on the resistivity and thermal expansion above
Tc indicates that the polarons have magnetic character [79,80,164,106,143]. Al-
though small-angle neutron scattering [106,143,165,166] confirms the presence
of nanometer-scale magnetic coherence and fluctuating short-range order in the
vicinity of Tc which persists up to ≈ 1.3Tc, proper analysis of the spin pair-
correlation function does not support the existence of magnetic polarons with a
well-defined size, at least in (La0.75Sr0.25)MnO3 single crystals [166]. The mag-
netic coherence is similar to that encountered in critical scattering from Fe or
Ni. Viret et al. introduced a spin-pair correlation function of a form consistent
with magnetic exchange interactions that extend beyond nearest neighbours. As
regards the dynamics of the magnetic fluctuations, muon spin relaxation indi-
cates unusual spin dynamics below Tc [167]; NMR shows that two neighbouring
moments remain parallel for more than 10−5 s [168]. More direct evidence of
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spin correlations on the scale of 1 nm at Tc has been deduced from analysis of
the quasi-elastic neutron peak in the Ca compounds [165]. In the Sr crystal, a
picture of slowly-fluctuating moments where ferromagnetic interactions are me-
diated by Zener electron hopping seems preferable to one of fast-moving spin
polarons with a definite size.

Jahn-Teller polarons are local distortions of the lattice around Mn3+ ions.
When these polarons are frozen, the Jahn-Teller distortion becomes cooperative
as in the O’ structure of compounds with small values of x. The more conducting
rhombohedral compounds with x ≈ 0.3 have equal Mn - O bond lengths imposed
by symmetry, but dynamically-fluctuating local distortions may still stabilise the
Jahn-Teller polarons [169]. Both static and dynamic distortions have been evi-
denced by neutron diffraction. The Jahn-Teller (J-T) polaron can form in a solid
when the J-T stabilisation energy δJT is comparable to the conduction electron
bandwidth W . Unlike the dielectric polaron where a charge polarisation deco-
rates the carriers and increases their effective mass, the J-T polaron carries with
it a local distortion which removes the degeneracy of the electronic ground state.
Some evidence for the J-T polaron is seen in the temperature-dependence of the
lattice parameters of orthorhombic samples with x ≈ 0.3. As these manganites
with x ≈ 0.3 are cooled towards Tc, the ratio c/

√
2a in the orthorhombic cell de-

creases sharply [170,70,7,171] reflecting an increasing deformation of the MnO6
octahedron in the basal plane which splits the eg band. The greater the distor-
tion, the more localised are the charge carriers. This deformation disappears in
the metallic state, below Tc. The dynamic Jahn-Teller effect has been detected
through the variation of the Debye-Waller factor for samples with x = 0.3 in
the vicinity of Tc [170,172,173] and in the temperature-dependence of the opti-
cal conductivity [120]. Ion channeling experiments also seem to provide direct
evidence for a dynamic Jahn-Teller distortion around Tc [174].

More dramatic evidence for polarons, which are probably of the Jahn-
Teller variety, is the isotope effect on the Curie temperature discovered in
(La0.8Ca0.2)MnO3 by Zhao et al. [175](Fig. 6.19). Tc is 21 K higher in samples
made with 16O than in those made with 18O. An isotope effect on the EPR
signal is also associated with a larger exchange integral in 16O than in 18O
samples [176].

The composition x = 0.2 is one where the dynamic Jahn-Teller effect for
Mn4+ is most pronounced [177]. No such isotope effect is found in the ferromag-
netic perovskite SrRuO3, where there is no strong Jahn-Teller ion. The effective
polaron bandwidthWeff depends on the characteristic frequency ω of the optical
phonons involved: Weff = W exp(−γδJT/�ω) where W is the bare bandwidth,
δJT is the Jahn-Teller stabilization energy which is about 0.5 eV [178,179,42]
and γ is a parameter depending on δJT/W , which is in the range 0 - 1 [175].
Another estimate of δJT is 0.35 eV [114]. The phonon frequency varies asM−1/2,
whereM is the isotope mass. Hence a significant reduction inWeff is expected on
passing from 16O to 18O. This translates into a reduction in Curie temperature
since Tc ∝ Weff in the limit where the Hund’s rule coupling JH � Weff [180,169].
There is also an effect on the resistivity in both paramagnetic and ferromagnetic
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Fig. 6.19. Temperature-dependence of the magnetization of (La0.8Ca0.2)MnO3 sam-
ples made with different oxygen isotopes [175]

states on replacing 16O by 18O. In the case of ({La,Pr}0.7Ca0.3)MnO3 the iso-
tope substitution is sufficient to convert a low-temperature metallic phase into
an insulator [56].

The absence of polaron conduction and colossal magnetoresistance effects in
mixed-valence cobalt perovskites is indirect evidence in favour of J-T polarons
in manganites, since low-spin Co4+ is not a strong Jahn-Teller ion.

6.2.3 Models for Electronic Transport

Spin-disorder scattering has been repeatedly invoked to explain the transport
properties of GMR systems. The first models were developed in the late fifties
and sixties by de Gennes and Friedel [181], Kasuya [182], van Peski-Tinbergen
and Dekker [183] and Fisher and Langer [184]. These early calculations deal
with spin scattering of conduction electrons in ferromagnetic metals and de-
generate semiconductors. Resistivity anomalies are expected at the Curie point
because of the onset of magnetic order. Friedel and de Gennes have considered
the effects of long-range order on the scattering near the critical point. Above
Tc, the magnetic scattering is constant and temperature independent. They de-
duced, however, that the resistivity should present a singularity at the Curie
temperature with a smooth decrease in scattering below Tc. Fisher and Langer
argued that short-range fluctuations make the dominant contribution to the
temperature-dependent part of the resistivity, so that the singularity should be
in the derivative of the resistivity at Tc (which is expected to follow the heat
capacity). These theories apply to ferromagnetic metals where the densities of
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conduction electrons with up and down spins are comparable (N↑ ≈ N↓). How-
ever, for double exchange (DE) materials, Searle and Wang [32] pointed out
that this approximation is invalid. In fact, (N↑ − N↓)/(N↑ + N↓) is of order
DE/EF where DE is the energy of the spins interacting with the applied field
and EF is the Fermi level. In the double exchange case, we have DE/EF > 1. In
most conventional models, the scattering by spin disorder enters the expression
of the conductivity via the scattering cross section. To calculate it, theories use
the Born approximation or take DE/EF as an expansion parameter, both of
which require DE/EF  1. Kasuya’s [182] expression, however, was used suc-
cessfully in lightly doped EuO [185], although DE/EF � 1, and the results were
confirmed independently by later work [186].

Searle and Wang [32] constructed a simple model from the molecular field
approach considering a strong coupling between the Mn cores and the conduc-
tion electrons spins. They consider two kinds of possible excitations: the first
consists in flipping one Mn spin along with the spin of any Zener electron lo-
cated at the site (because of Hund’s coupling). This effectively removes that
electron from those contributing to the global DE interaction since it can no
longer hop from its site to the others (its spin is no longer parallel to that of
the other Mn cores). The second is the spin flip of a manganese core alone
which does not remove an electron from the DE interaction. Hence, electrons
can be separated in two groups: those contributing to the global DE interac-
tion and those which do not. Using the expression for the decrease in energy
due to the DE interaction derived by Zener [122] it is possible to express the
total energy density of the electron system as a function of the average spin
polarisations associated with the Mn cores and the DE electrons. This can be
expressed as a function of the applied field by using a molecular field expression.
The scattering probabilities of the electrons are then calculated following Zener’s
assumptions that an electron can only travel between two Mn sites if they have
parallel spins. The scattering probabilities (P ↑ and P ↓ respectively for up elec-
trons and down electrons) can then be expressed as a function of the average
spin polarisation i.e. the reduced magnetization, M(T )/M(0). Conductivities of
up and down bands are inversely proportional to the scattering probabilities
and the expression for the total conductivity obtained by Searle and Wang is
σt = (N/C){[1 + (M(T )/M(0))2]/[1 − (M(T )/M(0))2]} with C an adjustable
parameter and N the total carrier density. Fig. 6.20 compares the result of fits
from different models to the resistivity curve obtained by the Canadian group in
their single crystals of (La,Pb)MnO3. The model gives a fairly good fit to their
data.

Kubo and Ohata [187] obtained essentially the same result from a more
rigorous approach starting from the double exchange Hamiltonian (also known
as the s− d model or Kondo lattice Hamiltonian, although the s−S coupling is
positive, whereas in the Kondo effect it is negative) H = −teff

∑
<ij>σ c

†
iσcjσ −

JH
∑

i Si · si. They detailed the resulting conductivity further by calculating
that the resistivity should vary as T 9/2 at low temperature in the spin-wave
approximation. Although, as already indicated, temperature exponents of the
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(a) (b)

Fig. 6.20. (a) Reduced magnetization of a (La0.69Pb0.31)MnO3 crystal as a function
of temperature. The dashed line is the result of the standard molecular field approx-
imation. (b) Normalised resistivity and magnetoresistance in 1 Tesla as a function of
T/Tc. In both figures, the dots are experimental data and the solid line is based on the
model of Searle and Wang [32]

order of 2 were measured at low temperature, T 9/2 corrections have been seen
by Snyder et al. [105]. Furukawa includes a term −µ∑jσ nσ where µ is the
chemical potential, and points out that large shifts of µ(∼ 0.1W ) are to be
expected as a function of temperature and magnetization [188].

It is noticeable that the extremely steep slope of the R(T ) curve just below
Tc (Fig. 6.1) cannot be accounted for by the above models. Consequently, sev-
eral groups have developed other models to account for the temperature and
magnetic field dependence of the resistivity, and have proposed scaling rela-
tionships between ρ and M [189,30,14,101,190]. Pierre et al. [191] proposed an
exchange-induced band crossing model, like EuO. Zhang considers a spin-polaron
model with clustering where the transfer integral is treated as a perturbation
[192]. Another approach is a qualitative percolation model based on transport
of Ising-like spins on a resistor network [193]. The work of Hundley et al. [30],
based on the observation that transport occurs by hopping above Tc, resulted
in the following empirical relationship ρ(H,T ) = ρm exp{−M(H,T )/M0} where
ρm and M0 are fitting parameters. Although, in general, ρm is linear in T for
hopping processes near 250 K, Hundley et al. were able to fit their data over a
wide temperature range using ρm = 21 µΩcm and µ0M0 = 0.20 T (Fig. 6.21).
This suggested a direct link between resistivity and the state of magnetization of
the sample. Furthermore, the relationship is exponential leading to a picture in
which the binding energy of the carrier is magnetization dependent. Nonetheless,
quantitative agreement depends on the fitting parameters (M0 is one third of
the saturation magnetization) and their interpretation is unclear. Dionne pro-
posed a similar model where the thermally-activated hopping energy depends on
magnetization [190]. Another form of phenomenology incorporates a two current
model [194,195], where the conductivity of one channel is purely dependent on
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Fig. 6.21. Resistivity data on (La0.7Ca0.3)MnO3 at different temperatures and applied
fields scaled in terms of the magnetization [30]

magnetic order, and the other is due to excitation of carriers across a gap, E0.
The form chosen [195], σ = α[M/Ms]2 + β exp{−E0/kT} where α, β and E0
are fitting parameters, mimics the observed transport reasonably well. At low
temperatures, the first term is large and short-circuits the sample. At Tc, the
magnetization becomes zero, and only the second term remains. Snyder et al.
[103] suggest that the magnetoresistance above and below Tc are best fitted by
a resistance in series with a magnetoconductor giving the empirical expression
ρ = ρ∞ + 1/{σ0 + F (H)} where F (H) ≈ H for T < Tc and F (H) ≈ H2 for
T > Tc. Several attempts have been made to incorporate both magnetic and
lattice effect within one theoretical framework. Apart from any shortcomings
in fitting the data to a magnetic term alone, there is experimental evidence
from near edge X-ray absorption [172] and ion channeling [174] for local lattice
distortions, especially above Tc, in Ca or Ba-doped LaMnO3. Furthermore, a
more rigorous quantitative calculation by Millis et al. [179] based on the dou-
ble exchange Hamiltonian was unable to give the right order of magnitude for
the Curie temperature, and could not account for the experimental resistivity
behaviour. Their main results for electrical transport were:

-ρ only has a derivative discontinuity at Tc while the resistivity peak is found
around Tc/2,

-below Tc, there are two terms in the expression for the resistivity, the am-
plitude of the spin fluctuations and an additional term proportional to M2.
Their effect is opposite and, at least near Tc the latter dominates and makes the
resistivity increase with an applied field.

-The calculated resistivity above Tc(∼ 1.5 µΩcm) is far too small.
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This is due to the Hund’s rule coupling, JH, being much greater than t, the
average hopping energy (proportional to the bandwidth), which makes local fluc-
tuations of Si ·Sj scatter electrons. When JH  t, fluctuations in Si ·Si are most
important and lead to the Fisher-Langer [184] predictions which yield decreasing
resistivity with decreasing temperature. Since JH > t in manganites (Table 6.1)
Millis et al. are critical of any mean field approach, including Searle and Wang’s
[32] and Furukawa’s [196,197]. They also point out that their result differs from
the work of Kubo and Ohata [187] because of their inclusion of the Si · Sj fluc-
tuations. Millis et al. argue that the magnetic fluctuations do not significantly
reduce the electron bandwidth in the double exchange model, so that a Fermi
liquid picture of weakly scattered bandlike electrons follows [179]. Their calcula-
tion demonstrates that double exchange alone cannot account quantitatively for
the properties of the manganites and they suggest that a complementary mech-
anism, namely the Jahn-Teller distortion, should be included in a description of
the motion of the eg charge carriers. Millis and colleagues [169,198] have also
calculated the effects of combining Jahn-Teller distortions with magnetic interac-
tions to obtain the resistivity and magnetic transition temperature. Qualitative
agreement with experimental data is obtained. In addition, they have examined
in detail the Fermi liquid to polaron crossover [199,200], which was alluded to
in the original work [179] to explain the low value for the conductivity.

Röder et al. [201,202] have also studied a model which includes Jahn-Teller
coupling and double exchange. This model does not account for the resistivity
in detail but finds that the charge is dressed both by lattice distortion and local
magnetic order. The authors show that for T  Tc, the polarons are very large,
extending over many lattice sites and, consequently, overlap one another to form
bands as envisioned by Zhou et al. [203]. For T ≈ Tc, the carrier becomes self-
trapped by the lattice distortion with spin polarization around the position of
the hole. A similar conclusion has been drawn by Lee and Min [204]. This picture
is very similar to the bound magnetic polaron of Kasuya [205], except that the
trapping potential is the substitutional impurity; for T > Tc, in the dilute limit,
the polaron is a localized charge surrounded by a nearest neighbour spin cloud.

An argument that Jahn-Teller effect is inessential has been advanced by
Varma [13] who points out that similar insulator-metal transitions occur in
mixed-valent Tm(SexTe1−x) compounds where no Jahn-Teller distortion exists.
He explains the insulating state by carrier localization due to magnetic disorder,
which creates nondiagonal disorder in the hopping matrix elements tij connect-
ing near neighbour sites where the spins are randomly distributed and slowly
fluctuating. The result is a band where at least one half of the states are local-
ized. If the carrier is localized, it will also tend to form a spin polaron whose
motion in the presence of an electric field will be governed by the slow spin
fluctuations. With increasing magnetic order, near and below Tc, these localiza-
tion effects become smaller. Similarly, an applied magnetic field decreases the
magnetic disorder and increases the localization length, thereby decreasing the
resistivity.
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A theory based on the concept of bipolarons has been developed by Alexan-
drov et al. [163]. The idea is that two dielectric polarons with opposite spins form
pairs in the paramagnetic state. This is possible in the case of strong electron-
phonon coupling materials. Above the Curie point, these bipolarons have a very
small mobility and transport is by thermal activation. Upon cooling through Tc

the exchange interaction of the p polaronic holes (the charge carriers) with d
electrons competes with the binding energy. The pairs are broken and single po-
larons in a ferromagnetic background can conduct current like in a metal. Hence,
the transition to the paramagnetic state is accompanied by a “current carrier
density collapse”, where both mobility and number of charge carriers must drop.
In the paramagnetic state, thermally activated pair breaking releases polarons
which can participate in the transport. The effect of the onset of magnetisation
and a possible applied field are described in detail in ref. [163]. The resistivity
is predicted to peak at Tc and the field effect leads to CMR. This is an elegant
and interesting theory but no unambiguous experiment has been reported so far
demonstrating the existence of bound polarons above Tc. Also, the role of dis-
order on transport has not been presented but seems to be of minor importance
which is not in perfect agreement with the experimental situation.

The magnetic character of the metal-insulator transition and the variable
range hopping behaviour observed above Tc (Fig. 6.18) call for a theory that
combines these elements. The problem here is that localisation lengths (1/α),
inferred from T0 using the expression kT0 = 18α3/N(E) appropriate for Ander-
son localization in doped semiconductors where N(E) is the density of states,
are of order 0.05 nm which is clearly unphysical [112]. The Dublin group [14,206]
developed the idea of carrier localization by magnetic rather than charge disor-
der to explain the transport properties over the entire range of temperature and
field. The metal-insulator transition is ascribed to a modification of the spin-
dependent exchange potential −JHs · S associated with the onset of magnetic
order at Tc. Here JH is the on-site Hund’s rule exchange coupling of an eg electron
with s = 1/2 to the t2g ion core with S = 3/2. Since JH ≈ 1 eV, there is a band
of states of width Um ≈ 2 eV into which the electron may hop (Fig. 6.22) and
the eg electrons may be localized by the random spin-dependent potential above
Tc, where conduction is by variable-range hopping. When a magnetic field is ap-
plied to the manganite or when there is an internal molecular field, the random
distribution of spin directions is narrowed, and the average magnetic potential
decreases. Over the whole temperature range, the resistivity is expected to vary
as [14]: ln(ρ/ρ∞) = {T0[1− (M/Ms)2]/T}1/4 where M/Ms is the reduced mag-
netization. Also, considering that the number of available sites for the hopping
electron may be limited by the Jahn-Teller distortions and other factors, the
parameter T0 is different from Mott’s original value, given above; the expression
becomes kT0 = 171α3UmV , where V is the cell volume. Taking Um = 2 eV, the
corresponding localization lengths are typically in the range 0.4 nm, the average
hopping range at room temperature is 1.5 nm and the hopping energy at room
temperature is ∆E = 0.1 eV. These numbers are physically plausible since the
localization length exceeds the ionic radius of Mn3+ and the hopping distances
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(a)

(b)

Fig. 6.22. Resistivity of a La0.7Ca0.3MnO3 film fitted with the magnetic localization
model with different expressions for the magnetization. The upper panel shows the
spin-dependent potential distribution P (V ) experienced by a hopping Zener electron
in the paramagnetic state [80]

are 3 - 4 times the Mn-Mn separation. Moreover, the resistivity and magnetore-
sistance curves are well reproduced by the above modified VRH formula [14], as
shown in Fig. 6.22.

Nagaev [17,207] has developed a theory where the resistivity peak and mag-
netoresistance are explained by considering localization and scattering from an
exchange potential that is caused by a difference in the local magnetization close
to a divalent impurity and far from it.

An alternative to considering the effects of magnetization on the localization
length is to construct an electronic density of states for the eg band (Fig. 6.23)
where the density of states itself is greatly modified at Tc. For simplicity we
assume that the eg band is unsplit by the Jahn-Teller effect and can accomodate
two electrons. The exchange splitting remains in the paramagnetic state, since
the local moment persists. A decrease in band width with increasing temperature
reflects the effect of magnetic order on t or W . For T  Tc, localized states
are due only to Coulomb disorder, including possible Jahn-Teller distortions.
Since the total number of states remain the same, the area under the curve has
to be conserved. The Fermi level EF which, in the metallic regime, is within
the extended states above the mobility edge Eµ that separates the localized
from the extended states, can find itself in the localized region of the density
of states (hatched) as magnetic order decreases. At very high temperatures,
the bandwidth reduction is greatest because the bandwidth is ∝ t0cos(θ/2) in
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Fig. 6.23. Band picture for manganites with x = 0.3 as a function of temperature.

the double-exchange model and the magnetic disorder includes even nearest
neighbours. Most (possibly all) states are localized because of a combination of
the influence of Coulomb disorder on the mobility edge and magnetic disorder
on the bandwidth.

It remains a challenge to clarify and modify these pictures. Very likely both
magnetic and charge disorder, and lattice distortion effects play some role in
the transport above Tc. It is a question of relative magnitude. Evidence for
Jahn-Teller and lattice polaronic effects in the electronic transport has been
presented, but magnetic interactions clearly dominate the potential near Tc. The
respective roles of the two lattice effects, the magnetic and Coulomb disorder
in the localisation process in the different regimes of carrier concentration and
temperature needs to be better understood.

6.3 Applications

Physical properties that may be exploited include the temperature dependence
of resistivity and the magnetoresistance. The rapid variation of resistivity in
the vicinity of Tc, with relative changes as high as 10-20%/K suggest uses as a
bolometer. The ability to modify the composition of the perovskite oxides so as to
place the Curie temperature anywhere in the range from 50-380 K, and thereby
tune the temperature variation of the resistivity gives flexibility. Drawbacks are
the temperature-dependent sensitivity with the highest values available only in a
limited range near Tc. Furthermore, the maximum sensitivity falls rapidly as Tc
increases; also when Tc is low, (< 100 K) the resistivity shows thermal hysteresis.

Prospects are brighter for exploiting the magnetoresistance. Potential appli-
cations include magnetic sensors, magnetoresistive read heads and magnetore-
sistive random access memory. In ferromagnetic compositions with x ≈ 0.3, the
maximum high-field magnetoresistance is associated with the resistivity peak
near Tc. One method to broaden the magnetoresistive response is to use mate-
rials with a canted ferromagnetic structure having a composition 0.4 < x < 0.5
[78,208]. A direct application of magnetoresistance is to use the materials as mag-
netic field sensors. The isotropy of the magnetoresistance means that a spherical
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crystal with a demagnetizing factor N = 1/3 may be used to sense the magni-
tude of a magnetic field regardless of its direction [209]. Other shapes, such as
films or cylinders may be used to measure the field in a particular direction or
plane but the appropriate demagnetizing factor should be taken into account. A
prototype position sensor based on a thin film with permanent magnet bias has
been built [210]. It is based on (La0.67Ca0.33)MnO3 which is sprayed or screen-
printed onto a ceramic substrate and fired at 1400◦C. A Wheatstone’s bridge
configuration is used to improve sensitivity and compensate for thermal drift.
Sensitivity is around ∼ 10 %/T.

Another sensor application is a magnetoresistive microphone [82]. When the
manganite sensor is presented to the field B directly it is possible to detect rel-
atively large fields, of order 1 T, which are required to modify significantly the
ferromagnetic order and thereby induce magnetoresistance. However the sensitiv-
ity 1/ρ(dρ/dB0) can be enhanced by flux concentration using a soft, anhysteretic
ferrite to guide the flux to a small cross section occupied by the manganite sen-
sor [211]. The magnetoresistive response can be amplified a thousand-fold in a
limited field range (Fig. 6.24). Segments of YBa2Cu3O7 have also been used to

Fig. 6.24. Resistivity as a function of applied field at room temperature for a thin
(La0.67Ca0.33)MnO3 film with and without flux concentration using long rods of Mn-
Zn ferrite [211]

enhance the flux below the superconducting transition temperature Tsc = 90 K
[212].

A more promising approach to achieving a good low-field magnetoresistive
response is to focus on the micromagnetic structure rather than to depend on
the applied field to modify the intrinsic magnetic structure within each do-
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main, i.e. exploit the low-field magnetoresistance rather than the colossal mag-
netoresistance. Here, the low-field response is favoured by a high density of
grain boundaries [116,211,123,213,128,127], and in tunnel spin valve structures
[137,136,138]. A first step towards miniaturizing the tunnel spin valve is the
current-perpendicular-to-plane sandwich device consisting of a micron-size di-
ameter pillar composed of two layers of ferromagnetic manganite separated by
an insulating spacer layer. A 450 % change of resistance was observed accord-
ing to whether the magnetization of the two manganite layers is parallel or
antiparallel [138]. The switching field for the device was 100 Oe at 4.2 K. Be-
sides showing the potential for generating large resistivity changes in low fields
with manganite heterostructures, this prototype device demonstrates how it is
possible to use films of ferromagnetic manganites as electronic spin polarizers
and analysers. A problem here is that the low-field magnetoresistance, whether
in spin polarised tunnel junctions, polycrystalline ceramics or powder compacts
is strongly temperature dependent in all circumstances where it has been ob-
served to date. Huge effects are seen at cryogenic temperatures, but the effect at
room temperature does not exceed 1%. Furthermore, the Curie temperature of
manganites is too low for most applications. Read heads, for example, have to
be able to operate up to 100◦C, which is uncomfortably close to the maximum
Curie temperature in Sr-doped manganites.

The ferromagnetic metallic manganites have an almost completely spin-
polarized 3d band. They are therefore a potential source of spin-polarized
electrons for a variety of spin electronic devices. The problem here is how best
to inject these electrons across the manganite interface at room temperature
while still retaining their spin polarization. Compatibility with existing Si-based
structures may need to be addressed. Three-terminal devices based on mangan-
ite/superconductor heterostructures operating at liquid-nitrogen temperature
[214] may open new perspectives in high-speed electronics. It has been suggested
that manganite/superconductor layer structures could be useful for ultrasonic
wave amplification, thermal switching and thermocouple infrared detection
[215].

An issue which is considered elsewhere in this book is noise in manganite de-
vices. There are reports of exceptionally large 1/f noise [216,217,218] or thermal
noise in the vicinity of Tc. The huge 1/f noise has a non-Gaussian character as-
sociated with magnetic inhomogeneities [218]. An implication is that there may
be problems exploiting the low-field magnetoresistance effect in low-frequency
applications, but the 1/f noise should not be a problem in high-frequency ap-
plications such as read heads. In the area of thin films and heterostructures, an
important task is to uncover the role of the grain boundary in polycrystalline
films (and ceramics) and to understand the contributions of intrinsic and/or in-
terface effects to the temperature-dependence of the low-field magnetoresistance.
Generally, the temperature range for useful magnetoresistive effects needs to be
extended. Then, a knowledge of the exact degree of spin polarization of the
conduction electrons in different materials and characterization and control of
the interfaces in heterostructures will be essential to achieve effective spin injec-
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tion in layered or planar devices. Changes in the electronic structure induced by
photons, electric field or other means which are long-lived (hysteretic phase tran-
sitions) need to be explored and controlled, especially in thin films, for potential
storage applications.

There is much work to be done, but it is sufficiently challenging and po-
tentially rewarding in terms of interesting physics and novel magnetoelectronic
devices that the subject of mixed-valence manganites and related compounds will
likely flourish for another number of years. The manganite research has directed
the attention of the community more generally towards electron localisation of
magnetic origin and half-metallic ferromagnetic oxides, where near-perfect spin
polarization opens prospects for novel devices based on magnetic control of the
electron stream.
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7 Spin Dependent Tunneling
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Abstract. A pedagogical introduction to tunneling processes in magnetic junctions is
presented. Different effects which influence the magnetoresistance of the junction are
reviewed.

7.1 Introduction

The magnetic field dependence of the current through magnetic junctions is
a subject of great interest. Spin dependent tunneling poses many interesting
scientific questions [1], and the number of applications for magnetic junctions
continues to grow. The present work intends to give a pedagogical introduction
to the physical processes which are responsible for the wide variety of phenomena
observed in magnetic junctions. There are many types of junctions and materi-
als, and a fraction of them are not yet completely understood. We will mostly
discuss those mechanisms which can be considered reasonably understood, and
of wide applicability. No attempt is made to cover in full the large and grow-
ing bibliography published on the subject. We will try to use whenever possible
examples of current interest.

In a field as vast as this one, a selection of topics is unavoidable. We first give a
rough clasification of magnetic junctions. Then, we discuss how the basic models
of tunneling need to be modified in the presence of a spontaneous magnetization
of the electrodes. This is done in Sect. 7.2. We next discuss the changes that the
interface can induce in the basic elastic processes mentioned earlier, in Sect. 7.3.
Sect. 7.4 deals with inelastic tunneling, mediated by magnetic excitations at the
electrodes or at the surface. In Sect. 7.5, we analyze the changes in the magnetic
structure of the surface which can be expected. In Sect. 7.6 charging effects are
presented. Some conclusions are discussed in Sect. 7.7.

7.2 Magnetic Junctions

7.2.1 Types of Junctions

Transport between two bulk metallic electrodes can be roughly classified into
two types, schematically shown in Fig. 7.1:

– When the separation between the electrodes exceeds a few angstroms, elec-
trons move between the electrodes by tunneling. The probability that any one

M.J. Thornton and M. Ziese (Eds.): LNP 569, pp. 159–171, 2001.
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(a)

(b)

Fig. 7.1. Schematic picture of a junction. (a) Tunnel junction. (b) Contact junction.

electron tunnels through a barrier of height V and length l is given by:

T ∼ exp

[
−c
√

2mV
�2
l

]
(7.1)

where c is a constant of order unity, which depends on the detailed shape of
the barrier and on the electronic wavefunctions. The barrier can be the vacuum
created between the two electrodes, in which case the height of the barrier is given
by the work function of the electrodes. More commonly, a barrier is created by
inserting an insulating layer between the two electrodes. In this case, the barrier
height depends on the position of the edges of the gap of the insulating material
with respect to the Fermi level of the electrodes.

As tunneling depends exponentially on the distance between the electrodes,
we expect that, in a junction of macroscopic size, the current will be due to
tunneling events at protrusions of the interface. A change of a few angstroms
can greatly modify the tunneling probability. The conductance at any of these
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points is given by :

g ∼ e
2

h
T (7.2)

– Alternatively, the two electrodes can be in contact in some points. Then,
the conductance of each contact is given by e2/h times the number of electron
channels through the contact. This number is given, roughly, by the cross section
of the contact expressed in units of k−2

F , where kF is the Fermi wavevector, which
gives the size of the electronic wavefunctions. Then:

g ∼ e
2

h
k2FA (7.3)

where A is the area of the junction. A number of interesting experiments have
been recently performed in magnetic junctions where with a single contact of
atomic dimensions [2,3,4].

7.2.2 Magnetic Properties

The previous discussion ignores the possible magnetization of the electrodes. If
the number of electrons of the two spin polarizations is not equal, we must define
a spin dependent conductance, at each of the points where electrons move from
one electrode to the other. The expressions defined earlier are modulated by
the density of states of each type of electrons. For a given bias voltage V , the
electrons which participate in the conduction come from the levels located, at
most, at a distance eV from the Fermi energy, EF. Thus, in order to understand
the transport at small bias voltages we need to know density of states at the
Fermi level, D↑(EF) and D↓(EF). As mentioned earlier, the tunneling amplitude
can also depend on the electronic wavefunctions, which, in a magnetic system,
will be spin dependent. A sketch is given in Fig. 7.2.
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Fig. 7.2. Sketch of the density of states at the two sides of a magnetic junction
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An applied field modifies the polarization of the electrodes, leading to changes
in the densities of states described above. Typically, magnetic fields are too weak
to alter significantly the energy barrier at the interface. In many cases, we are
only interested in the changes in the transport properties induced by the field, i.
e., the magnetoresistance of the junction. Then, we do not need to consider the
details of the barrier, which can be described in terms of an energy dependent
transmission coefficient.

Another reasonable approximation which allows us to greatly simplify the
analysis of the junction is to assume that the direct magnetic coupling between
the electrodes is negligible. As mentioned earlier, in a typical junction only a few
regions are in close contact. Even in these areas, exchange couplings between
atoms in different electrodes will be reduced, as the distances are larger than
the interatomic spacings. Thus, the orientation of the magnetization in each
electrode will be determined by bulk effects and by its previous history. On the
average, we can assume that the relative orientation of the magnetization of the
two electrodes can take any value.

On the other hand, under an applied magnetic field, fluctuations in the mag-
netization of each of the electrodes away from the applied field will be greatly
suppressed. Thus, in order to compute the magnetoresistance of the junction,
we just need to compare the conductance with a random orientation of the mag-
netization of the electrodes and that when both magnetizations are aligned.

Let us assume further that:

D↑(EF) ∝ N↑
D↓(EF) ∝ N↓ (7.4)

where N↑ and N↓ are the number of electrons with up and down spins. Then, in
the unpolarized situation, we expect that:

G0 ∝ 1
2
(N↑LN↑R +N↑LN↓R +N↓LN↑R +N↓LN↓R)

= NLNR (7.5)

where the indices L and R stand for the right and left electrodes, and NL and
NR are the total number of electrons.

In the polarized case, on the other hand, we have:

GH ∝ N↑LN↑R +N↓LN↓R (7.6)

Hence, we have:

GH −G0

G0
=

(N↑L −N↓L)(N↑R −N↓R)
NLNR

(7.7)

Hence, the magnetoresistance is directly proportional to the polarization of the
electrodes. This simple analysis roughly explains the pioneering experiments in
spin tunneling [5,6].

A more realistic theory should, at least, include two additional effects:
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– The density of states at the Fermi level needs not be proportional to the
total polarization.

– The wavefunctions of the majority and minority electrons near the bar-
rier need not be the same. Then, the transmission coefficient acquires a spin
dependence, which influences the magnetoresistance.

These two effects were first analyzed using a plane wave description for the
electronic wavefunctions [7]. However, many magnetic materials include transi-
tion elements, so that a more complicated description is required. In some cases,
like Fe alloys, the polarization of the density of states at the Fermi surface is the
opposite to the total polarization [8]. Near the surface, the s electrons are more
delocalized such that they play a major part in the transport process. When
this is the case, the junction magnetoresistance is mostly determined by the po-
larization of the s electrons, which can be different from the bulk polarization,
dominated by the d orbitals [9]. A detailed analysis of the role of the atomic or-
bitals near the junction for many situations of practical interest can be found in
[10]. In addition, some orbitals of the magnetic electrodes can make bonds with
the atoms in the insulating barrier. If that happens, the magnetoresistance be-
comes quite independent of the bulk properties of the electrodes, and interesting
possibilities for tailoring the properties of the junction arise [11]. The density of
states at a surface can also be modified by the existence of surface states. These
states will be polarized by the bulk magnetization, leading to resonances in the
magnetoresistance as function of bias voltage [12].

7.2.3 Problems

A three dimensional electron gas has the two spin subbands split by an exchange
potential, ∆. The dispersion relation is:

εk,↑ =
�
2k2

2m
−∆

εk,↓ =
�
2k2

2m
+∆ (7.8)

Calculate the values of [D↑(EF) − D↓(EF)]/[D↑(EF) + D↓(EF)] and (N↑ −
N↓)/(N↑ +N↓), assuming that ∆� EF.

Answer:
D↑(EF)−D↓(EF)
D↑(EF) +D↓(EF)

=
∆

2EF
N↑ −N↓
N↑ +N↓

=
3∆
2EF

(7.9)

Calculate the same quantities for a two dimensional magnetic layer.
Answer:

D↑(EF)−D↓(EF)
D↑(EF) +D↓(EF)

= 0

N↑ −N↓
N↑ +N↓

=
∆

EF
(7.10)
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7.3 Magnetic Impurities

In the previous section, we have assumed that an applied magnetic field aligns
the magnetization of the electrodes. Isolated paramagnetic impurities, however,
may need a much higher applied field to become polarized. The existence of these
misaligned impurity levels can lead to transport processes not allowed within the
framework discussed in the previous section.

To understand why it is the case, let us consider resonant tunneling through
a single paramagnetic impurity located between the two electrodes, as sketched
in Fig. 7.3.

z

x
y

Fig. 7.3. Paramagnetic impurity in a magnetic junction (see text).

We assume that Hund’s rule freezes the electronic spin of the impurity. We
simplify things further by assuming that the tunneling processes mediated by the
impurity do not involve exchange of electrons. Hence, the same electron which
moves from one electrode to the impurity continues, elastically and without loss
of coherence, to the second electrode. As the problem does not involve electron-
electron interactions, it can be reduced to a problem of independent electrons
moving in a spin dependent potential:

H = HL +HR +Htunn +
∑

i

Vimp ss′(ri − Rimp) (7.11)

where HL and HR stand for the Hamiltonians which describe the left and right
electrodes, and Htunn takes into account the remaining tunneling processes.

We first assume that the magnetization in the two electrodes is aligned (high
field case). The direct tunneling processes included in Htunn include only tunnel-
ing from a state in the majority (minority) band to another state in the majority
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(minority) band of the other electrode. Let us take the direction of the magne-
tization as the z-axis. A possible electronic state in a paramagnetic impurity
whose moment is oriented along the x-axis has the form:

|Ψ〉 = 1√
2
(| ↑〉+ | ↓〉) (7.12)

The impurity potential in (7.11) mixes the two spin states of the electrodes. In
terms of states with polarization along the z-axis, we can write:

Vimp↑↑(r − R) = Vimp↑↓(r − R)

= Vimp↓↓(r − R) =
1
2
Vimp(r − R) (7.13)

Hence, an electron with a given polarization in one electrode can tunnel through
the impurity, with equal probability, into the two polarization states of the other
electrode.

We can estimate these effects by averaging over all impurity polarizations,
taking into account the influence of the applied field [13]. A low field can align
the polarization of the electrodes, but will have a negligible influence on the
impurities. Then, resonant tunneling through the impurities gives a contribution
to the conductance of the junction which is independent of the applied field,
lowering the magnetoresistance. When the field is strong enough to align the
impurities, a magnetoresistance close to that of a clean junction will be recovered.
The crossover between these two regimes takes place when µ0SH/kBT ≈ 1. For
an impurity with total spin S = 3/2, for instance, the typical fields are 60 T at
300 K and 0.8 T at 4 K.

We have, so far, ignored the possibility that the impurity contains a partially
filled energy shell, so that the electron which tunnels in needs not be the same
as the one which tunnels out. In these processes, the total spin of the impurity
remains unchanged, but its orientation is modified. They are responsible for
the Kondo effect in bulk systems. If the electrodes are not magnetic, tunneling
through a Kondo impurity leads to a sharp resonance at the Fermi level [14],
which is strongly dependent on temperature and bias voltage. The generalization
of this study to magnetic electrodes is yet to be done. In principle, one would
expect that the formation of the Kondo resonance will be suppressed. If it is the
case, the inclusion of these exchange processes will not modify significantly the
independent electron tunneling model discussed above.

Finally, we can extend the previous analysis to incoherent tunneling through
the impurities. Transport of electrons can be separated into two independent
processes. The tunneling electrons lose memory of their spin during the passage
through the impurity, leading, again, to a reduction of the magnetoresistance.
Incoherent tunneling can be important if the impurity is actually a magnetic
cluster with many internal degrees of freedom.
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7.4 Magnetic Excitations

So far, we have considered elastic processes which do not involve the creation,
or absorption, of excitations in the junction. This has greatly simplified the
analysis, as the different interactions between quasiparticles need not to be taken
into account.

There are many inelastic processes possible in a junction. We are interested
in those which can influence the magnetoresistance. This will happen if the exci-
tations which are created during the tunneling process are themselves magnetic.
A clear signature of inelastic processes is their temperature dependence. When
the temperature is increased, there is more thermal energy available, kBT , and
the number of excitations in the system also increases. The rate of inelastic pro-
cesses is enhanced. In the case of a junction, an alternative way of providing
energy to the system is through the applied voltage. The associated energy scale
is eV . Thus, the contribution to the conductance of inelastic processes scales in
the same way with temperature or voltage.

As mentioned in Sect. 7.2, electron transport involves processes which take
place in regions of mesoscopic dimensions, at the surface of the junction. Let
us assume that this scale is a. An electron localized in a region of length d
can only couple to excitations with wavelengths greater than d−1. The inelastic
contribution to the conductance will be proportional to the number of excitations
with energies ωk ≤ max(kBT, eV), and wavevectors such that |k| ≤ d−1. At zero
temperature and finite bias voltage, we find that:

I(V ) ∝
∫ eV

0
dεNL,s(ε)f(ε)

×
∫ min(ε,ωd

0
dε′NR,s′(ε′)[1− f(ε− ε′ − eV )]D(ε′)

(7.14)

We assume that one electron tunnels from the left electrode, where the density of
states is NL(ε), to the right electrode, creating an excitation of energy ε′. D(ε′)
is the density of states of excitations with energy ε′. ωd stands for the energy
of a magnetic excitation of wavevector comparable to d−1. If the excitation has
spin one, like a magnon in a ferromagnet, then s′ = −s. A similar formula gives
the differential conductance at zero bias and finite temperature.

The dispersion relation of bulk magnons in a ferromagnet is:

ωk = J |ka|2 (7.15)

where J is the exchange coupling, and a is a length of the order of the size of
the unit cell. Then, D(ε′) ∝ ε′1/2, and, from (7.14), we obtain:

I(V ) ∝


V
(

eV
J

)3/2
eV � J (a

d

)2
V
(

a
d

)3
eV � J (a

d

)2 (7.16)
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Using an analogous argument, the contribution of inelastic processes to the dif-
ferential conductance at zero temperature is given by:

G(T ) ∝


(

kBT
J

)3/2
kBT � J (a

d

)2
(

a
d

)3
kBT � J (a

d

)2 (7.17)

The temperature dependence follows the decrease in the magnetization of the
electrodes, M(T = 0)−M(T ) ∝ T 3/2.

The analysis discussed here can be extended to magnetic excitations localized
at the interface between the electrodes (see next section). For instance, ferro-
magnetic spin waves in two dimensions have a density of states independent of
energy. That changes the exponent 3/2 in (7.16) and (7.17) to 1.

Magnon assisted tunneling leads to spin flip processes, and reduces the mag-
netoresistance of the junction. Recent experiments in different types of junctions
confirm the picture presented here [15,16,17] (see also [18]).

7.5 Magnetic Properties of the Interface

Atoms at the surface of the junction are surrounded by an environment quite dif-
ferent from that at the bulk of each electrode. Changes in the magnetic structure
of the surface are to be expected. The decrease in the number of nearest neigh-
bours typically leads to a shift of the density of magnetic excitations towards
lower energies [19]. The characterization of the magnetic properties of a surface
is, however, a very difficult task, and there is not a unique recipe to solve the
problem. First principles calculations of surface magnetic properties are scarce
[20]. In fact, it is very difficult to estimate, from first principles, the magnetic
properties of bulk materials.

We can get a simple estimate of the changes of the magnetic structure at the
surface by analyzing a semiinfinite chain of spins coupled ferromagnetically. In
the bulk, the spin waves are given by:

ωk = 2J [1− cos(ka)] (7.18)

so that the density of excitations is:

Dbulk(ω) =
1

π
√
ω(4J − ω) (7.19)

which has the characteristic ω−1/2 divergence of one dimensional models. As-
suming that the couplings near the surface are the same as in the bulk, it can
be shown [19] that the density of states at the last atom of the surface is given
by:

Dsurf(ω) =
2
π

1
ω +

√
ω(4J − ω) (7.20)

The divergence at low energies is now twice the value of the divergence found
in the bulk density of states. As both densities are normalized, this increase in
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Fig. 7.4. Density of spin wave excitations inside a ferromagnetic one dimensional sys-
tem (full line), and at the surface (broken line).

low energy modes implies a reduction in the weight of the high energy modes at
the surface, as shown in Fig. 7.4. At low temperatures, the spins at the surface
fluctuate more than in the bulk. In addition, the surface excitations can mediate
spin flip processes, reducing the magnetoresistance of the junction, as discussed
in the previous section.

The effects can be more dramatic in double exchange materials [21]. In these
systems, the effective coupling between spins is proportional to the kinetic energy
of the conduction electrons, which is reduced near the surface [22]. In addition,
the lattice can be distorted at the surface, leading to different charge states of
the magnetic ions. As in these compounds there are residual antiferromagnetic
couplings, besides the ferromagnetic double exchange mechanism, the surface
can become antiferromagnetic.

7.5.1 Problems

The surface of a magnetic junction is covered by a thin antiferromagnetic layer.
The spin wave dispersion relation is:

ωk = JAFka (7.21)



7 Spin Dependent Tunneling 169

where JAF is the antiferromagnetic coupling, k is a two dimensional vector, and
a is a length of the order of the unit constant. The scale of the roughness of
the interface junction is d. Calculate, using the method described in Sect. 7.4,
the contribution of inelastic processes involving spin-wave excitations, to the
conductance as function of voltage and temperature.

Answer:

G(V ) ∝


(

eV
JAF

)2
eV � JAF

(
a
d

)
(

a
d

)2
eV � JAF

(
a
d

) (7.22)

G(T )|V =0 ∝


(

kBT
JAF

)2
kBT � JAF

(
a
d

)
(

a
d

)2
kBT � JAF

(
a
d

) (7.23)

7.6 Charging Effects in Granular Systems

Metallic junctions play a major role in determining the transport properties
of granular systems. If the grains are magnetic, the magnetoresistance of these
samples is usually controlled by the motion of the electrons across the interfaces
between the grains, and not by intrinsic effects related to the bulk properties of
the materials [23,24].

Tunneling between small metallic grains shows additional effects besides
those considered so far. The increase of the charge of a grain by one electron
charge leads to a change in the electrostatic energy of the grain approximately
equal to e2/ε0R, where R is the average radius of the grain and ε0 is the dielec-
tric constant of the surrounding material. When this energy is larger than the
thermal energy, kBT , tunneling of electrons is suppressed. This phenomenon is
called Coulomb Blockade [25]. For particles of radius ∼ 100 nm, the correspond-
ing charging energies correspond to T = 30 K.

The interplay of charging effects and magnetism leads to a wide variety of
phenomena. The resistance of granular materials shows an upturn at low tem-
peratures [23,24], which can be interpreted in terms of an average charging en-
ergy, assuming a given distribution of grain sizes and barrier heights [26]. In
the presence of an applied field, the effective charging energy changes, typically
decreasing [27].

The dependence of the effective charging energy on applied field can be under-
stood by noting that the field increases the intergrain conductances. Transport
between grains is more efficient when the magnetization is aligned. Thus, the
field enhances the delocalization of the electrons, which will spend more time on
neighboring grains. The effective charging energy is reduced, in agreement with
observations [27].

Charging effects have been invoked to explain upturns in the resistance of
conventional junctions, which may have almost disconnected protrusions or even
metallic grains within the barrier [28].
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7.6.1 Problems

A granular material has grains of radius R ≈ 50 nm. The dielectric constant of
the medium is ε0 = 5. Calculate at which temperature Coulomb blockade effects
become appreciable.

Answer: T ≈ 90 K.

7.7 Conclusions

The present review analyzes some processes which determine spin dependent
transport at magnetic junctions. We have not tried to give an exhaustive de-
scription of this rapidly growing field. We have not discussed some topics in-
directly related to the subject, like transport across grain boundaries [29], or
across boundaries between magnetic domains [30,31]. Non equilibrium effects,
like the spin accumulation due to the slowness of the spin equilibration have
also not been discussed [32]. On the other hand, we have tried to use examples
of current interest, and we have discussed in some detail those processes which
can influence most the magnetoresistance of the junction.

References

1. R. Meservey and P. M. Tedrow, Phys. Rep. 238, 173 (1994).
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8 Basic Semiconductor Physics
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8.1 Introduction

8.1.1 What is a Semiconductor?

Semiconductors were originally defined as materials with a conductivity between
that of metals and that of insulators in the range between 102 and 10−9 (Ωcm)−1.
This definition emphasises electronic transport and shows that the conductivity
in semiconductors can be varied over an impressive eleven orders of magnitude.
It does not, however, indicate the microscopic mechanism for this behaviour. A
more advanced definition aiming at the explanation of the conductivity variation
reads as follows:

A semiconductor is a solid state material, which is insulating at low temper-
atures and has a measurable electronic conductance at higher temperature. The
electronic conductivity is due to the well-defined chemical composition, which
does not change in high electric fields or due to some influence from outside the
solid-state material.

Although this definition seems to leave the problem of defining conductivity,
specifically electronic conductivity, this term is readily explained in solid state
physics textbooks where classical and quantum mechanical free electron models
are introduced. As the focus here is on semiconductors, it is sufficient to know
that the conductivity of a material is determined by the charge carrier concen-
tration and the mobility of these charge carriers. In the case of electrons as
charge carriers it is, thus, necessary to find out, what determines the number of
electrons in a solid and which of those are available to conduct electrical current
(free or nearly free electrons) as opposed to electrons which are tied up in the
bonds within the solid. Therefore, conductivity must be explained by the kind of
structural bonds on an atomic level and the presence of free (delocalised) charge
carriers due to these bonds.

The periodic system of elements orders the elements in terms of their elec-
tronic and nuclear structure and is one way of finding out, how many electrons
an element can make available, either for conducting electrical current or for
bonding to other elements. Electrons in incomplete (outer) electron shells are
called valence electrons and the number of valence electrons defines the type
of bond the element can undergo and it determines to some degree the atomic
radii of the atoms as this is related to the fact how loosely or tightly the outer
electrons are bound to the atom. In the middle of the periodic system – be-
tween the metals on the left and the insulators on the right – resides the group
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of elemental semiconductors (group IV). The elements in this group have four
valence electrons per atom, i.e. four partly filled electron shells that need to be
filled. Therefore, elements of this group are reactive and can undergo bonds with
many other elements. On the other hand, elements with four valence electrons
tend to form covalent bonds when bonding to other elements of the same group.
Covalent bonds involve two electrons per bond and are fairly strong. The elec-
trons involved in these bonds are not free but localised. However, if energy, e.g.
light or heat, is absorbed by the material, the bond might be broken and an
electron is set free and can contribute to conduction. And, that is precisely, how
semiconductors work.

The most important group IV semiconductors are silicon (Si) and germanium
(Ge). But semiconductors are not only from group IV, but can be binary com-
binations of group III and V elements, like gallium arsenide (GaAs) and indium
phosphide (InP), or binary combinations of group II and VI elements, like zinc
selenide (ZnS) and cadmium telluride (CdTe) or even ternary alloys, having the
same number of electrons in total, “tied up” in covalent bonds. As the same
number of electrons is involved in all these materials they tend to have the same
or very similar crystal structures in their solid state. As one would expect with
carbon being in the same group of the periodic system, the crystal structure of
Si and Ge is in fact the diamond structure. The crystal structure of the binary
semiconductors, such as GaAs or InP, is the zincblende structure, which is the
same structure for binary compounds with the two different elements occupying
alternating positions [?].

At absolute zero temperature (T = 0 K), all electrons are bound to their
parent atoms. There are no free electrons left that would enable electric current
to flow. Therefore, semiconductors are insulators at low temperatures.

8.1.2 Simple Band Structure

It is now easy to redraw the structural view to introduce a simple band structure.
Consider Fig. 8.1, where a simple bond model is shown on the left hand side and
a simple schematic band structure on the right hand side. All valence electrons,
which are tied up in covalent bonds on the left are represented by the valence
band on the lower right.

At absolute zero temperature, in this energy diagram, all states in the valence
band are occupied and the conduction band is completely empty. The semicon-
ductor is insulating. At higher temperature or rather if energy in some form
is absorbed by the electrons, i.e. lattice vibrations, photons, etc., an electron-
electron bond can break and the electron becomes a free charge carrier capable
of conducting electrical current, the hole left in its place, however, is immediately
filled with other valence electrons from the surrounding bonds and thus is also
considered to be a free charge carrier, but of positive charge. Holes, therefore,
also contribute to the electric conductivity of the semiconductor. This process
of free electron formation is called electron-hole pair generation.

Fig. 8.1 illustrates the electron-hole pair generation at label 1. This mech-
anism is producing a larger amount of thermally generated electron-hole pairs,
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Fig. 8.1. Bond model (left) and simple band structure (right). After [?].

thus increasing the electrical conductivity of the semiconductor. Moving through
the crystal (label 2), i.e. after some time, the free electron will jump into an-
other broken bond somewhere in the crystal, cancelling the hole existing there
at that precise moment. This process is called electron-hole recombination (label
3). The introduction of the hole as a positive charge carrier simplifies the anal-
ysis; instead of observing the movement of a very large amount of electrons in
the valence band, our view is focused on a relatively small number of holes that
move in the opposite direction.

The generation of a free electron is represented in the energy diagram on
the right hand side of Fig. 8.1 by an electron jumping from the valence into
the conduction band (which represents the energy states of the electrons which
contribute to conduction). The electron at the bottom of the conduction band
has only potential energy. Under the influence of the electric field it will gain
some kinetic energy, which will enable electric current to flow. The increase of
the kinetic energy is represented by the electron moving upward from the bottom
of the conduction band. On the other hand, the increase of the kinetic energy of
the hole is represented by the hole moving downward in the valence band. The
energy difference between the valence and the conduction band, the forbidden
energy zone, is called energy gap and is the single most important parameter for
semiconductors, as it determines which energy needs to be absorbed to generate
charge carriers.

In pure semiconductors, free carriers are generated exclusively by the process
of electron-hole pair generation described above. Therefore, the concentration of
electrons in equilibrium equals the concentration of holes. Such semiconductors
are called intrinsic semiconductors.

But, whereas our simple band structure model only assigns an energy to the
electrons, real band structures look somewhat different due to the fact that elec-
trons also have momentum, which means that the direction of travel matters for
the “fine” structure of the band. The real structure is based on the wave picture
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for the properties of the electrons, and this is derived from wave mechanics, i.e.
quantum mechanics. The wave provides a way of calculating the effects an elec-
tron can produce. In quantum mechanics the electron energy is given by E = �ω,
its momentum is p = �k and its group velocity is v = dω/dk = dE/dp, where �

is h/2π, ω is the radian frequency and k is the wave number (the number of radi-
ans of phase change in unit distance). These equations are derived from a simple
one-dimensional model of a solid, consisting of a row of N atoms with a distance
a apart, each with two free electrons. When evaluating what values of k can be
used to make allowed wave functions or states, the highest wavelength is equal to
2Na and the lowest k, therefore, becomes π/(Na). Further k-values are equally
spaced 2π/Na . . . until 2Nπ/Na which is 2π/a. The regular spacing of allowed
values of k occurs in three directions when a three-dimensional lattice of atoms
in ordinary space is analysed – that is why k-space or momentum space is useful
to obtain a view of electron states. The 2N waves with k running from π/Na
to 2π/a are all the waves one needs to make a band. Note, that they are just
enough for the number of electrons in the crystal, and that the wavelength goes
from the size of the crystal to the distance between the atoms. Band structures
are periodic along the k axis because the real crystal is periodic in space. Usually
only one interval of k is shown, conventionally the first Brillouin zone, which is
called a reduced zone diagram. Energy diagrams against k (E-k diagrams) for
real semiconductors are specific for certain crystallographic directions and are
also of a more complex structure than our simple band structure in Fig. 8.1.

Fig. 8.2. Real band structures of Si (left) and GaAs (right). After [?].
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Figure 8.2 shows the real band structures of the most important semiconduc-
tors, Si and GaAs with their four valence bands on the bottom of the respective
diagrams and the four conduction bands on the top. The Γ point is the zone
centre [000] with the L point denoting the [111] zone boundary and X denoting
the [100] zone boundary, i.e. the shapes are not symmetric about the zone centre.
It is now much more difficult to find the energy gap or band gap because of the
irregularity of the structures. The band gap is given by the smallest distance
between the conduction band and the valence band, i.e. the gap between the
minimum in the conduction band and the maximum in the valence band. It is
apparent that for GaAs the minimum in the conduction band and the maxi-
mum in the valence band occur at the same k value (here in the zone centre),
whereas for Si there is a k-shift between the minimum and the maximum. Semi-
conductors like GaAs are called direct band-gap semiconductors (the transition
is a purely optical transition, the material can be used for light-emitting diodes),
those semiconductors with the minimum of the conduction band at a different
value of k from the maximum of the valence band are called indirect band-gap
semiconductors (the indirect transition involves an additional “step”, i.e. one or
more phonons.

The curvature of the bands is also of significance. As the velocity is v = dE/dp
the acceleration a of an electron due to some external force can be expressed as
a = dv/dt = (d/dt)(dE/dp) = (dp/dt)(d2E/dp2). But dp/dt is the rate of change
of momentum, and hence equals the applied force F . Thus d2E/dp2 replaces the
mass in the equation of motion F = ma and we can describe the response of
a carrier to a force by using (d2E/dp2)−1 instead of the mass. This new term
is known as the effective mass m∗ of a carrier and summarises the way the
interaction with the lattice affects the carrier motion. The effective mass of a
free electron is me

∗ and the effective mass of an electron in the bottom of the
conduction band is usually less than the free-electron mass, and may be much
less. Thus the real band structures can be described in terms of their value of the
curvature, and, therefore, in terms of their effective masses. A sharply curved
band has a large value of d2E/dp2 and hence a small effective mass and is,
therefore, called light-hole band. As can be seen from the diagrams the effective
mass may vary with direction (anisotropy).

8.2 Charge–Carrier Concentration, Band Gap and Fermi
Energy

8.2.1 Intrinsic Semiconductors

The first section introduced semiconductors and the important terms and char-
acteristic parameters. For an evaluation of the conductivity of semiconductors
and their behaviour, for instance with temperature, the number of charge carri-
ers has to be calculated. The electron and hole densities, n and p, are represented
on the right hand side of Fig. 8.3 (top) as the area under the curve of the elec-
tron and hole distributions, respectively. The charge-carrier distribution is the
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product of the number of electron states per unit energy per unit volume, which
is known as the density of states, and the fraction of occupied states at each
energy, which is given by the Fermi function, as known from standard solid state
textbooks.
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Fig. 8.3. (From left to right) Simple band structure, density of states, Fermi–Dirac
distribution and charge carrier concentration for (a) intrinsic, (b) n-type and (c) p-
type semiconductors at thermal equilibrium. After ref. [?].
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The density of states for a semiconductor as a function of electron energy
is shown in Fig. 8.3 (top). The density of states is zero in the band gap and
has a calculable shape elsewhere. Electrons and holes occupy states near the
band edges with parabolic dispersion relations having effective masses m∗

c and
m∗

v, respectively. For electrons near the lower edge of the conduction band the
density of states D(E) is found to be

Dc(E) =
8
√

2π(m∗
c)

3/2

h3
√
E − Ec (8.1)

and, accordingly, for holes near the valence-band edge

Dv(E) =
8
√

2π(m∗
v)

3/2

h3
√
Ev − E (8.2)

Since electrons are fermions, they obey the Pauli–exclusion principle and Fermi–
Dirac statistics, provided the system is in thermal equilibrium. The Fermi–Dirac
distribution functions for electrons and holes are given by

fn(E) =
1

1 + exp
[

E−EFn

kT

] (8.3)

fp(E) =
1

1 + exp
[

EFp−E

kT

] . (8.4)

The Fermi energy or Fermi level EF is the energy where the probability of a state
being occupied by an electron or hole is one half. It is apparent from Fig. 8.3
(top) that the Fermi function is symmetrical about the Fermi level and tends
to zero for large positive energies and to one for large negative energies. EFn

and EFp
, the Fermi energies for electrons and holes, are equal under equilibrium

conditions, i.e. EFn = EFp = EF. In that case

fp(E) = 1 − fn(E). (8.5)

If the energy is much larger than the Fermi level, then the Fermi–Dirac distri-
bution function can be approximated by the Maxwell–Boltzmann distribution,
i.e. the electrons behave like classical billiard balls:

fn(E) = exp
[
−E − EF

kT

]
. (8.6)

Accordingly, for an evaluation of the number of holes the fraction of states that
are unoccupied is given by

fp(E) = exp
[
E − EF

kT

]
, (8.7)

provided only holes are taken into account and the relevant energy range is
well below EF. Note that the equations are equivalent with the sign reversed –
another indication that the idea of holes carrying positive charge is correct.
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With the distributions of electrons in the conduction band and holes in the
valence-band being described by

dn(E) = Dc(E)fn(E)dE (8.8)
dp(E) = Dv(E)fp(E)dE, (8.9)

the electron and hole densities are obtained by integration.
Therefore, the total number of electrons per unit volume is found as

n =
1
4

(
2m∗

ckT
π�2

)3/2

exp
[
−Ec − EF

kT

]
(8.10)

and accordingly the number of holes per unit volume becomes

p =
1
4

(
2m∗

vkT
π�2

)3/2

exp
[
−EF − Ev

kT

]
(8.11)

Collecting the terms outside the exponentials into single symbols Nc and Nv
yields a more compact expression for n and p which is

n = Nc exp
[
−Ec − EF

kT

]
(8.12)

p = Nv exp
[
−EF − Ev

kT

]
. (8.13)

Nc and Nv are called the effective density of states for the conduction band and
for the valence band, respectively. They can be thought of as the number of
states that would be required to give the same value for n (or p) if all the states
were at a single energy, that of the respective band edge. Nc and Nv vary with
temperature while the actual density of states varies very little.

The product of the concentrations of electrons and holes in equilibrium

np = NcNv exp
[
−Ec − Ev

kT

]
(8.14)

gives an expression for the band gap EG = Ec − Ev, the single most important
parameter for semiconductors. Therefore,

EG = kT ln
[
NcNv

np

]
(8.15)

The product of n and p depends only on the temperature and the kind of semi-
conductor, and not on hole or electron densities. In intrinsic semiconductors
without added impurities, the electron density equals the hole density and the
name intrinsic carrier density ni is given to this carrier density, such that

np = ni
2 (8.16)
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This equation is very important in the study of semiconductors but seems to
be difficult to emphasise adequately, such that this equation is sometimes called
the semiconductor equation. It is an example of the chemical law of mass action.

Dividing the two equations for n and p yields

p/n =
Nv

Nc
exp

[
Ec + Ev − 2EF

kT

]
(8.17)

which can be rewritten to determine the Fermi energy

EF =
Ec + Ev

2
− kT

2
ln
[ p
n

]
− 3

4
kT ln

[
m∗

c

m∗
v

]
. (8.18)

This equation shows that the Fermi level for intrinsic material (ln(p/n) = 0)
is at the average of Ec and Ev with a small correction when m∗

c �= m∗
v. When

p �= n then the Fermi level shifts towards the band with the majority carriers.
It is worth remembering that the semiconductor equation holds for any values

of p or n as long as a thermal equilibrium situation is being described. So it
often is valid. However, when p and n are controlled in some device by the
external conditions, then one may be far from thermal equilibrium. From (8.14)
it becomes clear that the variation of the intrinsic carrier concentration with
temperature can be caused by

1. a variation of the effective masses of the carriers,
2. the pre-exponential term T 3/2,
3. a variation of the band gap EG, and
4. the kT term in the denominator of the exponential function argument.

The variation of the effective masses of the carriers for small temperature changes
can be neglected. Therefore, these are assumed to be constant. The variation of
the band gap for small temperature changes can be described by a linear function.
This linearisation is fairly common whenever a simple expression for the relation
between the band gap and temperature is needed for a certain temperature range.
By substitution a linear coefficient in a logarithmic plot can be obtained. This
coefficient has the same order of magnitude for all common semiconductors. A
different kind of band gap variation is found with the composition when intrinsic
semiconductors are considered. There is some relation between the band gap and
the lattice constant, such that a kind of phase diagram can be plotted. Within
certain limits the band gap widens with decreasing lattice constant. The band
gap can be custom engineered by picking two binary semiconductors with band
gaps on either side of the required band gap and gradually substituting the
constituent elements to meet the required band gap. For instance, the band gap
for AlAs50Sb50 will be half way between the band gaps for AlAs and AlSb.

8.2.2 P and N Type Doping

Another way to engineer the band gap and all electrical properties of a semi-
conductor is called doping. Pure semiconductor materials (say 99.999%) are
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called intrinsic semiconductors as their properties are intrinsic to the material
itself. By adding some impurities to a semiconductor its electrical properties are
changed. Doped semiconductors are called extrinsic semiconductors. Impurities
that cause the increase of electron concentration are called donors. A semicon-
ductor in which the concentration of electrons is higher than the concentration of
holes is said to be an (extrinsic) n-type semiconductor. The concentration of elec-
trons in Si and Ge can be increased by doping with penta-valent elements, such
as phosphorus (P) and arsenic (As). These elements have five valence-electrons,
but only four are necessary to form a covalent bond with the host semiconductor.
The extra electron will be loosely bound to its parent atom and a very small
amount of energy (referred to as ionisation energy) will be sufficient to tear it
off. Naturally, when the fifth electron leaves, the donor atom becomes a positive
(donor) ion. At room temperature, this ion is “frozen” in the semiconductor
crystal, and does not contribute to the current flow. The presence of a donor
impurity is represented by discrete states within the energy gap, very close to
the conduction band.

A p-type semiconductor, in which the hole concentration is higher than the
electron concentration, is obtained by adding acceptor impurities. In Si and
Ge, acceptors are usually tri-valent elements, such as boron (B). Since these
elements have only three valence electrons, one is missing to complete covalent
bonds with host semiconductor atoms. Therefore, such an atom will bind an
electron that would otherwise jump from the valence band into the conduction
band, thus preventing the formation of an electron-hole pair. By catching an
electron, the acceptor impurity will become a negatively charged ion. Acceptors,
therefore, remove an electron from the valence band, leaving a mobile hole.
Acceptor impurities introduce energy states within the energy gap, very close
to the valence band. Since ionisation energies of typical donor and acceptor
impurities are rather small (10 to 50 meV), at room temperature (T=300 K,
kT=25 meV) almost all impurities are ionised.

Compound semiconductors consist of a tri-valent and a penta-valent element
(III–V compounds), such as gallium arsenide (GaAs) or gallium phosphide (GaP)
or a di-valent and a hexa-valent element (II–VI compounds), such as zinc sul-
fide (ZnS). The chemical bond is formed by the component with higher valence
lending some electron(s) to the component with lower valence. Donor impurities
in compound semiconductors are elements with valence higher than that of the
component they substitute, and acceptor impurities are elements with valence
lower than that of the component they substitute. It is interesting to notice that
a tetra-valent element, such as Si and Ge, in III–V compound can be both, a
donor impurity (if it substitutes a tri-valent component) or an acceptor impurity
(if it substitutes a penta-valent component).

Shallow donors or acceptors are impurities which really increase the concen-
tration of electrons or holes in the semiconductor, while deep level impurities
which are reducing the concentration of carriers due to the nature of their bond
to the host crystal which is then a significant modification/perturbation to the
crystal structure and the binding.



182 H. J. Jenniches

8.2.3 Impurity Bands

When a semiconductor is doped with donor or acceptor impurities, impurity
energy levels (or impurity bands) are introduced in the band gap. A donor level
is defined as being neutral if filled by an electron and positive if empty. An
acceptor level is neutral if empty and negative if filled by an electron.

The calculation of impurity energy levels is based on calculating the ionisation
energy for a donor replacing the mass by the conductivity effective mass in
relation to the mass and ionisation energy of the hydrogen atom. The ionisation
energy is the energy necessary to free the fifth valence electron from the donor
atom, or to capture the fourth electron onto the acceptor atom. Accordingly,
for the case of a donor impurity the ionisation energy equals the distance of the
donor impurity level from the top of the band gap. For the case of an acceptor
impurity it equals the distance of the acceptor impurity level from the bottom
of the band gap.

Usually, every impurity introduces several energy levels into the band gap, for
instance, Au in Ge has three acceptor levels and one donor level in the band gap.
Any impurity modifies the electrical properties of the semiconductor material by
creating additional energy levels. The highest purity is, therefore, required in the
manufacturing of semiconductor devices.

8.2.4 Charge–Carrier Concentration and Fermi Energy of Extrinsic
Semiconductors

Again, the knowledge of the position of the Fermi level allows a determination of
the concentration of electrons and holes in the system. When impurity atoms are
introduced the Fermi level must adjust itself to preserve charge neutrality. Under
the conditions of electrical neutrality the total of positive charges (free holes and
fixed ionised donor or acceptor atoms) must equal the total of negative charges
(free electrons and fixed ionised acceptor atoms) in a semiconductor, therefore

p+N+
d = n+N−

a , (8.19)

where p and n are the intrinsic hole and electron concentrations, N+
d and N−

a
are the concentrations of ionised donors and acceptors, respectively. If the con-
centrations of the impurities are not too high, almost all of them will be ionised
at room temperature. Consequently, it can be assumed that the concentrations
of ionised impurities is equal to the total concentration.

For n-type semiconductors, as shown in Fig. 8.3, middle section, for a known
concentration of donors Nd that introduce an energy level Ed within the band
gap, the concentration of ionised donors is given as

N+
d = Nd

[
1 − 1

1 + 1
2 exp [(Ed − EF)/kT ]

]
(8.20)

Similarly for a p-type semiconductor (Fig. 8.3, bottom), for a known concentra-
tion of acceptors Na that introduce an energy level Ea within the band gap, the
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concentration of ionised acceptors is given as

N+
a =

Na

1 + 4 exp [(Ea − EF)/kT ]
(8.21)

The factor in front of the exponential function in the denominator of the ex-
pression for N+

d equals 2 since a donor level can accept one electron with either
spin or can have no electron. The equivalent factor in N−

a equals 4 because each
acceptor impurity level can accept one hole of either spin and the impurity is
doubly degenerate as a consequence of the two degenerate valence bands at wave
vector k=0 in Si, Ge and GaAs [?].

At very low temperatures EF − Ed � kT and Ea − EF � kT , respectively,
which results in exponential functions in the denominators of the above formulas
being much larger than one, and, consequently,N+

d andN−
a approaching zero. As

the temperature increases, the exponential function diminishes and the ionised
impurity concentrations approach the total concentrations.

Thus, in an n-type semiconductor the charge neutrality equation becomes

n = p+N+
d (8.22)

and for a set of given Nc, Nd, Nv, Ec, Ed, Ev and T the Fermi level EF can be
determined.

At elevated temperatures (above room temperature) the charge neutrality
condition can be approximated by

n+Na = p+Nd (8.23)

and together with (8.14) one can evaluate the electrons and holes in an n-type
semiconductor as

nn0 =
1
2

[
(Nd −Na) +

√
(Nd −Na)

2 + 4ni2
]
, (8.24)

which is approximately Nd, if Nd −Na � ni and Nd � Na and

pn0 =
ni

2

nn0

≈ n2i
Nd

(8.25)

and therefore

Ec − EF = kT ln(Nc/Nd) or EF − EFi = kT ln(nn0/ni). (8.26)

EFi denotes the Fermi energy in the intrinsic case.
Equivalently for p-type semiconductors

pp0 =
1
2

[
(Na −Nd) +

√
(Nd −Na)

2 + 4ni2
]
, (8.27)

which is approximately Na, if Na −Nd � ni and Na � Nd and

np0 =
ni

2

pp0

≈ n2i
Na

(8.28)
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and therefore

EF − Ev = kT ln(Nv/Na) or EFi − EF = kT ln(pp0/ni) (8.29)

The subscripts n and p refer to the type of semiconductor, the subscript 0 refers
to the thermal equilibrium condition.

For n-type semiconductors the electron is referred to as majority carrier and
the hole as minority carrier, since the electron concentration is the larger of the
two. The roles are reversed for p-type semiconductors. These simple solutions
can be obtained if |Na −Nd| � ni. It is seldom necessary to deal with situations
when this is not the case, but if this does occur, approximate values for p and n
can be obtained by first ignoring the minority carrier in (8.23) and then using
the semiconductor equation and n + Na alternately to obtain more accurate
solutions. NB: In doped material, the minority carrier density is several orders
of magnitude smaller than ni.

In highly doped semiconductors, only a fraction of impurities replaces atoms
in the crystal lattice of the host semiconductor, which results in part of them
remaining electrically inactive. At lower temperatures (typically below 200 K),
the energy of crystal lattice vibrations is not sufficient to ionise all impurities.
The temperature range where this takes place is referred to as partial ionisation
range or freeze out region.

8.3 Carrier Transport

8.3.1 Introduction

The next step and a first, simple application of doped semiconductors would be
to join p-type and n-type semiconductor in order to make a p-n junction, i.e. a
basic semiconductor diode. But when considering an interface between an n- and
a p-doped semiconductor it is obvious that there would be an enormous particle-
density gradient around this interface. This gradient will lead to diffusion of
one type of charge-carriers into the other type of semiconductor, thus creating
a diffusion current. Therefore, firstly basic transport phenomena have to be
discussed.

The reasons for a net flow of holes or electrons [?], i.e. current, are

1. an electric potential gradient dV/dx,
2. a particle-number density gradient dn/dx,
3. a temperature gradient dT/dx

Current due to an electrical potential gradient is called drift current while cur-
rent due to a particle number density gradient is a diffusion current. The third
point will not be discussed here, but is significant for such useful devices as
thermoelectric cooling systems and power generators.
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8.3.2 Drift Current and Mobility

If an electric field E accelerates carriers of charge q and effective mass m∗ their
acceleration a is given by

a =
qE

m∗ (8.30)

The distance each carrier is travelling in the direction of E by this acceleration
is 1

2aτ
2, where τ is the time between collisions. The average drift velocity vd is

found by taking an average value of the distance, and dividing by the average
value of τ , such that it can be written

vd =
qτdE

m∗ , (8.31)

where τd is τ2/τ/2, making τd the mean time between collisions as appropriate
for carrier drift. With qτd/m

∗ = µ, known as the mobility for the particular
carriers in the material one obtains

vd = µE (8.32)

From this equation it is apparent that the drift produced by the same field on
holes and on electrons is in opposite directions. The drift currents carried by
both holes and electrons, however, add and the current density j carried by
drifting carriers is

j = nqvd = nqµE, (8.33)

where n is the total number of drifting charge carriers. If there are different kinds
of carriers present they contribute separately to the current density [?].

8.3.3 Diffusion Current

The flux F of particles down a density gradient dn/dx is described by

F = −Ddn

dx
(8.34)

where D is the diffusion coefficient. This equation is known as Fick’s law and
applies to any example of diffusion. The electric current density is

J = −qDdn

dx
(8.35)

where q is the charge of the carrier.
When considering the diffusion of holes and electrons in the same density

gradient, holes and electron fluxes are in the same direction, and, thus, the con-
ventional electrical currents tend to cancel – in fact the opposite of the situation
when drift was examined [?]. In fact, D and µ are related by

D

µ
=

kT
e

(8.36)
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a relation found by Einstein. Both, D and µ are each an effect of collisions of
carriers with the same lattice defects. Consequently a formula for D is

D =
kTτd
m∗ (8.37)

The average distance that a carrier can diffuse before recombining is known as
the diffusion length λd. If the mean distance between collisions is λ, then in a time
τr, the recombination lifetime, a carrier can make τr/τd collisions and can diffuse
a distance λ(τr/τd)1/2. With the average thermal velocity being (kT/m∗)1/2, the
diffusion length is obtained to

λd = λ(τr/τd)
1
2 = (Dτr)

1
2 . (8.38)

Unfortunately τr has to be determined by experiment, as recombination can
occur in several ways, for instance, via traps in the middle of the band gap.

In the evaluation of devices it is sometimes more appropriate to consider
both types of charge carriers in a combined parameter and therefore assume
ambipolar diffusion. The ambipolar diffusion coefficient is then given by

Da =
nn + pn

nn/Dp + pn/Dn
(8.39)

and the ambipolar lifetime is

τa =
pn − pn0

U
=

nn − nn0

U
, (8.40)

where U is the net recombination rate [?].
The continuity equation balancing the numbers of particles entering and

leaving a region by considering diffusion, drift, generation and recombination of
charge carriers is a useful starting point for further analysis.

8.3.4 Mobility and Conductivity

The mobility µ has already been given in (8.32). Perhaps the easiest way of
thinking of mobility is merely as the constant relating vd and E. Another way
of putting the same idea is that the mobility is the velocity for unit field. Notice
that for high mobility a large value of τd (the mean time between collisions of
charge carriers) and a small value for the effective mass are necessary.

Mobility is a useful generalising concept when discussing the effect of an
electric field on carriers. A very useful first approximation is to say that µ is a
constant for a given carrier and material. But, in fact µ depends on temperature,
and on doping density when this is high, because of the effect on the collision
time. The mobility also depends on the electric field: it falls at high fields, so
that the drift velocity in many materials tends to a maximum limit. For Si the
maximum drift velocity is 105 m/s for both holes and electrons. The field needed
for electrons to reach this speed is about 2 · 106 V/m, but holes require fields
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above 107 V/m, where avalanche ionisation is beginning to set in. Nevertheless
a constant mobility is usually assumed for nearly all devices.

As with other parameters the mobility can be taken from plots of mobility vs.
impurity concentration in conjunction with the rough temperature dependence
µ ∝ m∗− 3

2T− 1
2 [?].

The conductivity σ of a sample may be defined as the current that flows
across a unit cube when the field and hence voltage between opposite faces is
unity. Thus for a semiconductor where both holes and electrons are present, with
e the electronic charge

σ = neµe + peµh, (8.41)

where the subscripts e and h are referring to electrons and holes, respectively.
Again, for simplicity, one can take values of the conductivity or resistivity from
appropriate plots for n- and p-type semiconductors which are readily available
in the relevant literature [?].

8.3.5 Band Bending

So far only equilibrium conditions were considered – but, what is happening in
terms of the energy diagrams, when a semiconductor is subject to an electric
field? Also, energy diagrams do not really have an x-axis, but from now on x
means the position and here x = 0 is the surface of the semiconductor. When
dealing with p-n junctions it will be the location of the metallurgical junction.

Both holes and electrons are essentially mobile charges qh and qe (not to
be misunderstood as the donor or acceptor atoms, which are “fixed” within
the normal atomic diffusion limits) and these positive and negative charges will
move when placed into an electric field. To visualise this it is useful to consider
a simple plate capacitor [?]: On the positive plate of the charged capacitor there
is a positive surface-charge density and on the negative plate an equal negative
charge. By considering what states are available for theses charges to occupy
it is possible to establish how thick the surface layer is which they cause. In
a metal there are plenty of states into and from which the extra electrons can
be transferred, and the electric field falls from a high value outside the metal
towards zero in a few atomic layers. In a semiconductor there are only a small
number of states which, at acceptable energies, can be filled or emptied. If a
large charge has to be accommodated then the charge on the “semiconductor”
capacitor extends much further into the crystal involving a surface layer of a
thickness that is no longer negligible.

In Fig. 8.4 (middle) a p-type semiconductor forms the negative part of a
capacitor. The usual electrostatic convention that surface charges exist in neg-
ligibly thin layers is on this occasion being refined by a more detailed analysis.
Poisson’s equation is used to analyse the layer in consideration. The Poisson
equation relates the charge density and the electric field intensity and takes the
general form

∇E =
ρ(r)
ε

, (8.42)
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Fig. 8.4. Band bending – the three types of surface layer for a p-type semiconductor:
accumulation (top), depletion (middle) and inversion (bottom). After [?].

where ρ(r) is the charge density as a function of position and ε = ε0εr is the
permittivity of the medium with ε0 being the permittivity of free space and εr the
relative permittivity of the material under consideration. In a one-dimensional
model one has

d2V

dx2
= −ρ

ε
, (8.43)

where V is the potential in Volts. ρ can be expressed as the product of the charge
carrier density and the charge, i.e. eNa for a p-type semiconductor. Provided one
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can define the boundary conditions for the region in question, it is possible to
obtain the electric field intensity E after integration of the above expression.
The charge density at the geometrical surface is zero, so that the electric dis-
placement, D = εE, is continuous in the mathematical sense on entering the
semiconductor surface. As ε is different inside the semiconductor, the electric
field inside is not the same as the electric field outside. The displacement falls to
zero deep in the semiconductor from its value D outside. Hence the total charge
density per unit area, in the whole surface layer is, by Poisson’s equation, equal
to D.

The bands bend in this case to lower energies near the surface. This removes
the valence band from the Fermi level so that there are no holes in the valence
band near the surface, though the acceptors stay ionised. The volume-charge
density is that of the acceptors, and a useful estimate of the thickness t of the
surface layer, if the acceptor concentration is Na, is

teNa = εE = D = ε
dV

dx
. (8.44)

This sort of surface layer is called depletion layer, and, for instance, occurs on
one side of a p-n junction, which is discussed in the next section. The relation
between the voltage V across the depletion layer and the thickness of the layer
then becomes

V =
t2eNa

2εrε0
. (8.45)

If a p-type semiconductor is made the positive plate of a capacitor (see Fig. 8.4,
top) and hence the electric field is directed out of the surface, the bands are bent
to more negative energies near the surface and there is an accumulation of holes
near the surface. The charge density increases near the surface as the valence
band approaches the Fermi–level, so that the formula describing the thickness
of the layer has to include the integral of a charge density which varies with
position. The formula is thus more complex than that for the depletion layer.

A strong field into the surface of a p-type semiconductor (Fig. 8.4, bottom)
can cause the conduction band to become the nearer of the two bands to the
Fermi level. The surface is then n-type even though the bulk is p-type, and
electrons occupy states in the conduction band near the surface in this so-called
inversion layer. Such a layer forms the conducting channel in many practical
devices.

If, instead of a p-type semiconductor, n-type is used, corresponding effects oc-
cur for the opposite electric field direction. Thus, a field into the surface produces
enhancement, a weak field out of the surface produces depletion, and a strong
field out of the surface produces inversion. In the inversion layer the majority
charge carriers would be holes [?].
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8.4 P–N Junction

8.4.1 Barrier Potential

A p-n junction is formed when p-type and n-type semiconductor regions are
adjacent to each other. The p-n junction is a semiconductor diode (a diode is a
two-terminal device that has a high resistance to electric current in one direction
but a low resistance in the other direction). The conductance properties of the
p-n junction depend on the direction of the voltage, which can in turn be used
to control the electrical nature of the device. The behaviour of the p-n junction
is the basic characteristic of many semiconductor devices, which makes the p-n
junction a fundamental device.

As discussed previously, joining p-type and n-type semiconductors to make
a p-n junction will lead to diffusion of one type of charge-carriers into the other
type of semiconductor. This leads to electron-hole recombination throughout a
certain width from the initial metallurgical junction with the formation of a
depletion layer within that width. As the depletion layer is depleted of charge
carriers it represents a high electrical resistance compared to the n- and p-type
parts of the semiconductor device. On both ends of the p-n junction charge
neutrality still holds, but within the depletion layer it does not. Therefore, this
is a non-equilibrium situation and the current balance has to be considered. It is
useful to analyse a simple situation: a p-n junction in equilibrium with no applied
voltage or net current as shown in Fig. ??. Without examining the detailed
variation of carrier density or potential across the junction three statements can
be made [?]:

1. The net current of electrons across the junction is zero.
2. The net current of holes across the junction is zero.
3. At all points pn = ni

2 is valid.

The zero total current density of electrons can be thought of as two cancelling
components caused by drift and diffusion. These two components can be written
as

− n(x)eµe
dV (x)
dx

+ eDe
dn(x)
dx

= 0, (8.46)

where V (x) is the potential and n(x) the electron density at a distance x from
one side of the junction. Rearranged this becomes

µe
dV (x)
dx

= De
1
n

dn(x)
dx

. (8.47)

Integrating (??) from x = xn, well on the n-side of the junction, to x = xp,
safely on the p-side one obtains

∫ xn

xp

µe
dV (x)
dx

dx =
∫ xn

xp

De
1
n

dn(x)
dx

dx. (8.48)
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Fig. 8.5. A p-n junction diode without bias, from top to bottom: sketch of a p-n
junction, dopant density throughout the abrupt junction, electron energy diagram,
potential variation, electric field variation with peak at the boundary between p and
n, differential of electric field variation and carrier density variation. After [?].

The left hand side becomes an integral in V with limits Vn and Vp and the right
hand side an integral in n with limits nn and np, in each case well away from
the junction. Then

Vn − Vp =
De

µe
ln
[
nn

np

]
. (8.49)

If the junction was made by doping the n-side with Nd donors and the p-side
with Na acceptors, then a good approximation is nn = Nd, and np = ni

2/Na.
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Hence

Vn − Vp =
De

µe
ln
[
NdNa

ni2

]
. (8.50)

Thus, there is a potential difference between the two sides, the so-called barrier
potential Vb, which curbs the tendency of the electrons to diffuse away from
the place where they are densest. Unless the doping is very heavy, the barrier
potential is less than the band gap of the semiconductor. Typical values of bar-
rier potential for junctions in Ge and Si are 0.4 V and 0.8 V [?], respectively.
The barrier potential results from the fact that large amounts of electrons and
holes (the respective majority charge carriers) diffuse from their sides into the
depletion zone and recombine and thus annihilate the charge connected with
them. What is left are the fixed donor and acceptor ions in the n- and p-type
semiconductor material, which represent positive and negative immobile charges
which therefore change the charge distribution in the p-n junction.

In an equilibrium situation the Fermi level is constant right through the
system. The difference of the potential energy on the two sides is equal to (Ec −
EF) on the p-side minus (Ec − EF) on the n-side.

With (8.12) and (8.13) this gives

Vb = Vn − Vp =
kT
e

ln
[
Nc

nn

]
− kT

e
ln
[
Nc

np

]
, (8.51)

but as before nn = Nd and np = ni
2

Na
, so that

− Vb =
kT
e

ln
[
NdNa

ni2

]
. (8.52)

If this is compared to the former equation for Vb, it is apparent that

kT
e

=
De

µe
. (8.53)

This equation is identical with (8.36), the Einstein relation. The derivation can
be repeated for holes; the barrier potential comes out accordingly, and there is
a corresponding version of (??) which is

kT
e

=
Dh

µh
. (8.54)

Thus, if either mobility or the diffusion constant is known, the other quantity
can be calculated.

8.4.2 Depletion Zones

As mentioned above, a region close to the metallurgical p-n junction tends to
be depleted of holes and electrons, and is known as a depletion layer. Fig. ??
shows p-n junctions with forward and reverse bias. The externally applied bias
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Fig. 8.6. Energy bands for a p-n junction with (a) forward bias and (b) reverse bias.
After [?].

shows up as a difference between the Fermi levels on the two sides – this is
a fundamental point in reading or constructing diagrams. The applied voltage
occurs mostly across the junction/depletion layer.

The reverse bias adds to the barrier potential and results in a wider deple-
tion layer. The forward bias subtracts from the barrier potential – in general the
forward bias never reverses the usual situation to make the p-side more positive.
In terms of device properties this means that the reverse bias decreases or pos-
sibly “blocks” the current flowing from one side of the device to the other side,
whereas the forward bias leads to enhanced current flow. This is exactly, how
the p-n junction works as a basic rectifying diode.

In order to understand real devices an investigation of the detailed structure
of the depletion layer is required. Two assumptions are made: the first is that
the density of doping atoms changes rapidly from one value Na on the p-side
to another steady value Nd on the n-side. Such a junction is known as a step
junction or an abrupt junction. In practice, as long as the cross-over occurs
in a distance that is much less than the full width of the depletion layer, this
assumption will be a good approximation. The second assumption is that the
distance over which the electron or hole density falls to a small value is short
enough to be ignored. This is equivalent to saying that the depletion layer must
be much thicker than the Debye length (the maximum distance at which the
Coulomb fields of charged particles are expected to interact), or that the total
potential difference Vj across the junction is much greater than kT/e. In the
depleted parts of the p-region, the only charges are fixed acceptor ions, which
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are negative. Thus using Poisson’s equation again

dE

dx
=

ρ

εrε0
=

−eNa

εrε0
. (8.55)

Hence
E = −eNax

εrε0
+ C. (8.56)

When E = 0, x = xp at the boundary of the depletion layer in the p-region, so
that

E = −eNa(x− xp)
εrε0

. (8.57)

Because of the choice of the direction of the x axis in Fig. ??, xp is a negative
number, so E reaches its most negative value Emax when x = 0,

Emax =
eNaxp

εrε0
. (8.58)

In the depleted part of the n-region, the only charges are the donor ions, which
are positive,

dE

dx
=

eNd

εrε0
, (8.59)

E =
eNa(x− xn)

εrε0
, (8.60)

where xn is the boundary of the depletion layer in the n-region. From the analysis
of the n-layer,

Emax = −eNaxn

εrε0
. (8.61)

The total potential difference Vj across the junction is the sum of the voltages
across the two parts,

Vj =
e

2εrε0
(Ndx

2
n +Nax

2
p). (8.62)

The two equations for Emax must give the same answer, so Na|xp| = Nd|xn|.
Hence there will be a thicker depletion layer where the doping is lighter and a
thinner one where there is heavy doping. Equation (??) also means that most
of the voltage appears across the lightly doped side. In an extreme case one can
ignore the thickness and voltage on the heavily doped side. Such a junction may
be indicated by a plus sign (p+ − n), and the total thickness of the depletion
layer is proportional to

√
Vj . Accordingly the total depletion layer thickness or

width W is

W =

√
2εrε0(Nd +Na)

eNdNa
Vj . (8.63)
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8.4.3 VaricapT M Diode or Varactor Diode

This is an example of a device that is basically a simple p-n junction but refers
to a diode in which the capacitance varies with the applied voltage. It is, in fact,
the capacitance of the depletion layer, which depends on the bias voltage. In the
analysis of transistors the depletion-layer capacitance is a factor which limits
performance (it affects the frequency response). In most diodes the capacitance
is unwanted, but in varactor diodes or VaricapsTM , this capacitance is exploited.
The capacitance C(Vj) of the depletion layer is

C(Vj) =
dQ

dV
(Vj) =

dQ

dW
(Vj)

dW

dV
(Vj), (8.64)

where Q is the charge on each side of the capacitor, W is the total thickness of
the depletion layer and Vj is the total difference in potential between the p- and
n-sides. If we take a p− n+ diode, then the major part of Vj and of W is in the
p-region. As a result W ≈ xp and Q = eNaxpA with A being the area of the
junction. Hence

dQ

dW
=

dQ

dxp
= eNaA. (8.65)

From (??), when xn 
 xp

dW

dVj
=

2εrε0
2eNaAxp

. (8.66)

Eliminating xp from (??) by using (??) again and then writing out the expres-
sions for the two terms in (??), gives

C(Vj) = A

√
eNaεrε0

2
1√
Vj

. (8.67)

Thus C(Vj) decreases as the bias becomes more negative. If C(Vj) is expressed
in terms of the depletion-layer thickness, then

C =
Aεrε0
W

. (8.68)

So the capacitance is identical with that of an ordinary capacitor of the same size,
shape, and permittivity as the depletion layer. This is true for all p-n junctions,
no matter what the variation of doping with position is.

8.4.4 Light Emitting Diodes

A light emitting diode (LED) is another example for a device that is basically
a simple p-n junction made up from particular materials. LEDs belong to the
group of optoelectronic components like semiconductor laser diodes and photo-
diodes, that have revolutionised communication technology. LEDs can convert
electrical energy into optical radiation by means of electroluminescence, i.e. the
generation of light by passing an electrical current through the material under
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an applied electric field. Electroluminescent light differs from thermal radiation
or incandescence (radiation as a result of the temperature of the material) in the
relatively narrow range of wavelengths contained within its spectrum. For LEDs,
the spectral line width is typically 10 to 50 nm. The electroluminescent light is
obtained by injecting minority carriers into the region of a p-n junction where
radiative transitions can take place [?]. This is achieved by forward biasing the
p-n junction, such that many holes are pushed from the p-region into the junc-
tion region and many electrons are pushed from their n-region into the junction
region [?]. In the junction region the electrons fall into holes, i.e. recombine.
The recombination of electrons and holes leads to the release of energy – in the
band theory this corresponds to an electron falling from the conduction band
or one of the donor levels just beneath it in the n-region to the valence band
or one of the acceptor levels in the p-region [?]. There are two main competing
processes for the recombination: (a) a simple radiative transition with a lifetime
τrr resulting in the emission of a photon, and (b) a non-radiative transition via
recombination centres with a lifetime τnr resulting in the release of a phonon.
The quantum efficiency is the fraction of the excited carriers that combine ra-
diatively to the total recombination [?]. For an LED to be efficient, the ratio
τrr/τnr must be small, i.e. radiative transitions have to be highly probable. For
indirect band-gap semiconductors (see Sect. 8.1.2 and Fig. 8.2) like Si and Ge
this is not the case and the energy released is all dissipated as heat, but for direct
semiconductors like GaAs the transition is purely by emission of a photon.

In general, the recombination rate is proportional to the surplus carrier den-
sity in the junction region, i.e. the intensity of the light emission is depending
on the current through the junction. Typical current/voltage values for an LED
are 20 mA at 2-3 Volts. As LEDs are responding very quickly to changes in the
current, the light emission can be modulated at frequencies of several MHz.

The energy of the emitted photons is approximately equal to the band gap,
i.e. the photon wavelength can be varied by using materials with different band
gaps. The variation of the band gap with composition for ternary semiconductor
compounds was briefly discussed at the end of Sect. 8.2.1, whereas band gap
engineering via the addition of impurities is explained in Sects. 8.2.2 and 8.2.3.
For instance, GaAs emits infra-red radiation and GaP doped with Zn and O
emits red light at 1.7 eV. Particular emphasis has to be given to the design and
construction of the p-n junction in the LED: a photon is only useful when it has
emerged from the diode [?]. Absorption in the semiconductor and total internal
reflection at the surface reduce the effective output by a factor of up to one
hundred in some devices.

8.5 Haynes–Shockley Experiment

The Haynes–Shockley experiment is an example of a typical experiment in semi-
conductor physics, i.e. a measurement of characteristic semiconductor param-
eters. The classic experiment by Haynes and Shockley (1951) apparently lead
to the development of the transistor. The experiment is described in a paper
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entitled “The Mobility and Life of Injected Holes and Electrons in Germanium”
[?]. Alternative contact types or injection methods are now preferred, but this
is the way it was first done. Minority carrier mobility and lifetime, as measured
in this experiment, are vital parameters for materials from which, for instance,
bipolar (minority carrier junction) transistors are made.

In this experiment electron-hole pairs are produced by a (hot) electron in-
jection, i.e. a pulsed signal applied through probes on the semiconductor. These
carriers are then allowed to drift in opposite directions in an applied electric
field. The minority carriers are detected by a reverse-biased metal point contact.
The arrival of the minority carriers is observed on an oscilloscope to be delayed
by a time which is proportional to the distance the carriers have travelled, so the
minority carriers have a definite drift velocity. The drift velocity is found to be
proportional to the drift field, so the minority-carrier mobility can be calculated.
The value of the mobility for a specific carrier (e.g. electrons in Si) turns out to
be the same whether they are majority or minority carriers, and the experiment
shows evidently that minority carriers are needed for a complete explanation
of semiconductor phenomena [?]. An alternative injection technique for this ex-
periment could be the photo-production of electron-hole pairs, i.e. using a light
source focussed onto a small area, demonstrating the importance of minority
carriers and their mobility. Complementing Hall measurements can then give
the mobility of majority carriers.

As this classic experiment initialised the development of conventional semi-
conductor devices, one might expect similar experiments studying spin coherent
transport in semiconductors to promote the new technology of spin electronics.
The first very promising studies in this field have been performed in recent years
and are reviewed in the chapter on “Spin transport in Semiconductors” by M.
Ziese.

8.6 Exercises

1. What are the equilibrium concentrations of holes and electrons at 300 K in
silicon doped with

(a) Nd = 3 · 1020m−3

(b) Na = 2 · 1022m−3 and
(c) Nd = 7.5 · 1016m−3, Na = 5.0 · 1016m−3.

Assume ni = 1.45 · 1016m−3.
What would you expect to happen to the carrier concentrations as the tem-
perature was raised to 500 K?

2. Calculate the resistance at 300 K between opposite faces of a bar of silicon of
length 1 cm with a cross-sectional area of 6 mm2. Assume

(a) the silicon to be intrinsic
(b) the silicon to be doped with 1022 donors/m3 and
(c) the silicon to be doped with 1022 acceptors/m3.
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Assume ni = 1.45 · 1016m−3, µe = 0.135m2V−1s−1 and µh = 0.043m2V−1s−l.
3. What donor doping density is required to form a resistor of 1.5 kΩ in an

integrated circuit? The length of the resistor is 75 µm and its width is 5 µm.
You may assume that the depth of the diffusion is 4 µm. Assume T = 300 K.

4. An abrupt Si p-n junction is doped with 1021m−3 B atoms in the p-region and
1020m−3 P atoms in the n-region. Calculate

(a) the barrier potential Vb,
(b) the depletion layer thickness without applied voltage,
(c) the depletion layer thickness when -10V is applied and
(d) the depletion layer capacitance with -10V bias,

if the area is 10−8 m2.
Assume T = 300 K, ni = 1.45 · 1016m−3 and εr = 11.9.

5. In the Haynes–Shockley experiment a narrow, pulsed beam of light generates
electron-hole pairs in an n-type semiconductor at a distance of 50 mm from
a rectifying probe which acts as a detector of minority carriers. If the electric
field along the line joining the point of incidence of the light beam and the
probe is 1000 V/cm and the detected signal is observed 10 µs after the light
pulse calculate the mobility of the minority carrier.

Answers:

1.(a) n = 3 · 1020 m−3, p = 7 · 1011 m−3

(b) p = 2 · 1022 m−3, n = 1.05 · 1010 m−3

(c) n = 3.16 · 1016 m−3, p = 6.64 · 1015 m−3

2.(a) Ri = 3.92 · 106 Ω
(b) Rn = 7.72 Ω
(c) Rp = 21.7 Ω

3. Nd = 1.16 · 1023 m−3 or Na = 3.36 · 1023 m−3

4.(a) Vb = 0.51 V
(b) W=2.7 µm
(c) W=12.3 µm
(d) C=0.085 pF

5. µ = 0.05 m2/Vs
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9 Metal–Semiconductor Contacts
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Metal–semiconductor contacts display a range of electrical characteristics from
strongly rectifying to ohmic, each having its own applications. The rectifying
properties of metal points on metallic sulphides were used extensively as detec-
tors in early radio experiments, while during the second world war the rectifying
point contact diode became important as a frequency detector and low level mi-
crowave radar detector [1]. Since 1945 the development of metal semiconductor
contacts has been stimulated by the intense activity in the field of semiconductor
physics and has remained vital in the ohmic connection of semiconductor devices
with the outside world. The developments in surface science and the increased
use of Schottky barriers in microelectronics has lead to much research with the
aim of obtaining a full understanding of the physics of barrier formation and
of current transport across the metal-semiconductor interface. Large gain spin
electronic devices are possible with appropriate designs by incorporating ferro-
magnetic layers with semiconductors such as silicon [2]. This inevitably leads to
metal-semiconductor contacts, and the impact of such junctions on the device
must be considered. In this section we aim to look simply at the physical models
that can be used to understand the electrical properties that can arise from these
contacts, and then briefly discuss how deviations of these models can occur in
practical junctions.

The simplified energy band diagrams for a metal and n-type semiconductor
are shown in Fig. 9.1. Assuming the metal work function φm is much greater than
the semiconductor work function φs, then when brought into intimate contact
under conditions of thermal equilibrium, electrons pass from the conduction
band of the semiconductor into the metal until the Fermi levels equalise. This
leaves behind a depletion region in the semiconductor causing band bending and
a barrier φbn.

The diffusion potential Vi, or amount by which the bands are bent upwards,
is given by

Vi = φm − φs (9.1)

The bending upwards of the bands in an n-type semiconductor produces
a barrier to electrons from semiconductor to metal. The barrier height φb as
viewed from the metal is usually quoted:

φbn = Vi + (Ec + EF) = φm − χs (9.2)

Where χs{= φs − (Ec − EF)} is called the electron affinity of the semicon-
ductor. Equation 9.2 is known as the Schottky limit, and was developed inde-
pendently by Schottky and Mott in 1938 [3]. The drift and diffusion of majority
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Fig. 9.1. Simplified band diagram of a metal and a n-type semiconductor, φm � φs

before (left) and after (right) contact

carriers govern the actual current voltage characteristics of the contact across
the depletion region and emission over the barrier. These two processes are es-
sentially in series and the resulting characteristics are governed by which ever
causes the most impediment to majority carrier flow [4]. At thermal equilibrium,
the rate at which the electrons diffuse across the barrier from the semiconductor
to the metal is balanced by the rate at which electrons drift across the barrier in
the opposite direction due to the junction electric field; there is no net current
(Fig. 9.2a). Applying a forward bias voltage VF across the contact reduces the
depletion region width as the depletion voltage reduces from Vi to (Vi − VF).
The electrons in the semiconductor see a reduced barrier and flow to the metal
increases. Negligible voltage appears across the low resistance metal, and so φb
and electron flow into the semiconductor remains unchanged. As a result there
is a net flow of electrons from the semiconductor to the metal (Fig. 9.2b).

Applying a negative bias −VR across the contact increases the potential drop
across the region by (Vi +VR) and increases the barrier seen from the semiconduc-
tor, while the flow from the metal to the semiconductor remains unchanged. The
net effect is a small current flow from the semiconductor to the metal and recti-
fication has occurred (Fig. 9.2c). The resulting contact is known as a Schottky
barrier and is firmly established as a diode device in microelectronic technology.
It allows devices with higher conductances than is possible with p-n structures,
has a lower turn on voltage (0.2 V for Al/n-Si) and is also a majority carrier
device enabling faster recovery times and higher frequency applications [5].

The case for an n-type semiconductor with φm � φs is shown in Fig. 9.3.
After contact electrons flow from the metal into the conduction band of the
semiconductor, causing a small surface accumulation of electrons on the semi-
conductor side of the boundary. There is no potential barrier to electrons flowing
in either direction. The region of the contact is of low resistance, the highest re-
sistivity region being the bulk semiconductor and any applied voltage appears
across this region and does not affect the contact band diagram. The bulk semi-
conductor resistance determines current flow, and the contact is known as ohmic.
These are an important group of metal-semiconductor contacts and are central
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Fig. 9.2. (a) metal–semiconductor contact at thermal equilibrium and (b) under a
forward applied bias VF and (c) under applied reverse bias VR.

in silicon and gallium arsenide technologies as interconnects between semicon-
ductor devices and the outside world [5].

In practice, metal semiconductor contacts do not follow the Schottky–Mott
model and the barrier height is not proportional to the work function of the
metal. The barrier height is instead more complicated and related to one or a
combination of the work function of the metal, the electron affinity and resistiv-
ity of the semiconductor, barrier reduction due to image force lowering and the
nature and density of semiconductor surface states. A high density of surface
states, as found in covalent semiconductors such as Si, Ge and GaAs can effec-
tively pin the barrier height and make it completely independent of the metal
work function [6]. Barrier heights are also relatively insensitive to the doping
level of the semiconductor provided it is below 1017 cm−3 [5]. Knowledge of the
microscopic structure of the metal-semiconductor interface and of the interfacial
reactions of the metal semiconductor atoms is also necessary to fully characterise
metal-semiconductor junctions. When brought into intimate contact the semi-
conductor may react with the metal to form one or more chemical compounds
which affect barrier height. Examples of this type of interface are contacts con-
sisting of metal-silicide-silicon, which are becoming increasingly important in
the manufacture of repeatable and reproducible Schottky devices, and are find-
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Fig. 9.3. Band diagram for a metal and n-type semiconductor with φm � φs before
(left) and after (right) contact. The resulting contact is ohmic.

ing widespread use in modern microelectronics [7]. The reactive interface causes
the contact to move into the interior of the silicon lattice, away from surface
imperfections and contaminants. As a result the barrier height becomes very
stable and reproducible. Silicides can also form low resistance ohmic contacts
[5]. In another common type of interface, the natural stable oxide of the semi-
conductor of up to 20 Å in thickness may be present before and after metal
contact is made. This oxide barrier is assumed to be an ideal insulator devoid
of any charge, and the potential drop across it is negligible compared with that
across the semiconductor depletion region. The oxide is usually thin enough for
electrons to easily tunnel through, so this oxide layer does not act as a barrier
for electron flow. This interfacial layer effectively decouples the metal from the
semiconductor and so each can be treated as a separate system. The surface
states are regarded as a property of the particular semiconductor-insulator com-
bination and we can ignore any modification in surface dipole contributions to
the metal work function or semiconductor affinity.

Fig. 9.4. The effect of an interfacial layer between the metal and semiconductor.

In summary, the resulting metal-semiconductor interface can have a variety of
electrical characteristics from strongly ohmic to highly rectifying. The resulting
barrier depends upon the materials used and the nature of the interface between
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them. This has great implications within any magnetic spin device that aims to
combine magnetic metals with semiconductors. The quality of the interface and
the effect of parameters such as heat and time on this junction and their effect
on the electrical characteristics may define the potential applications of such
junctions. The integration of magnetic layers with semiconductors to produce
high gain spin electronic devices will inevitably produce metal-semiconductor
contacts. Integration with silicon may form silicides, and the magnetic and elec-
trical nature of these layers may be vital when considering spin injection and
transport through the structures.
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10 Micromagnetic Spin Structure
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Abstract. Magnetization inhomogenities, associated for example with grain bound-
aries, give rise to local spin-dependent potentials and affect the magnetoresistance.
The local magnetization M(r) depends on both intrinsic and extrinsic factors. In-
trinsic properties, such as spontaneous magnetization and anisotropy, are determined
on an atomic scale and are basically independent of the material’s real structure and
history. Extrinsic properties, such as remanence and coercivity, are linked to mag-
netic hysteresis, realized on mesoscopic or macroscopic length scales, and are strongly
real-structure dependent. The local magnetization M(r), which determines the mag-
netoresistance, is determined from a nonlinear and nonlocal micromagnetic energy
functional containing the intrinsic properties as parameters. This chapter focuses on
basic micromagnetic effects and on the spin structure at grain boundaries. Continuum
and layer-resolved analytic calculations yield a quasi-discontinuity of the magnetization
between misaligned and in-completely exchange-coupled grains and a disproportionally
large grain-boundary magnetoresistance.

10.1 Introduction

Electron scattering in advanced magnetoresistive materials depends on the spin-
dependent potential associated with the local magnetization M(r). In order
to abstract from the atomic origin of the magnetoresistance, which is different
for GMR [1,2,3,4,5], CMR [6,7,8,9], and PMR materials [10], we introduce the
term spin-projecting magnetoresistance (SMR). The basic assumption of SMR
is that the magnetoresistance is a unique though generally difficult-to-calculate
function of M(r). SMR must be distinguished from ordinary magnetoresistance
and anisotropic magnetoresistance, which reflect Lorentz forces in typically non-
magnetic metals and spin-orbit coupling in transition metals, respectively. Phys-
ically, SMR means that the magnetic field alters the mean free paths for ↑ and
↓ channels by modifying the local potential felt by the conduction electrons.
The Bloch character of one-electron wave functions in perfect crystals implies

zero resistivity, but thermal or structural disorder yield finite mean free paths
λ, finite relaxation times τ , and nonzero resistivities ρ ∝ 1/τ . Due to the Pauli
principle, the interaction between electrons depends on the relative spin orien-
tation, so that the local potential and the electron scattering is spin-dependent
(see Chap. 4). Subject to the availability of electronic states – as epitomized by
the density of states at the Fermi level – this mechanism leads to an explicit
magnetization dependence of the resistivity.
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In the case of weakly inhomogeneous materials the resistivity is proportional
to the square of the gradient of the spin-dependent local potential [11] and
therefore proportional to the square of the magnetization gradient. Since mag-
netization inhomogenities are most pronounced in low and moderate magnetic
fields H, the resistance may be very large at low fields, whereas high magnetic
fields reduce the resistance by aligning the spins.
The determination of the local magnetization (mesoscopic spin structure)

is a micromagnetic problem. The traditional term micromagnetic [12] is some-
what unfortunate, because most micromagnetic phenomena – such as magnetic
hysteresis – are nanostructural, realized on deep-submicron length scales. Micro-
magnetic or extrinsic properties reflect the real structure (defect structure, mor-
phology, metallurgical microstructure) of a material. By contrast, intrinsic prop-
erties, such as spontaneous magnetization and magnetocrystalline anisotropy,
refer to perfect crystals.
Micromagnetic problems are usually solved on a continuum level [12,13,14].

Narrow-wall phenomena, which have been studied for example in rare-earth
cobalt permanent magnets [15], involve individual atoms and atomic planes and
lead to comparatively small corrections to the extrinsic behavior. However, in
the context of spin electronics, grain-boundary related scattering is generally
non-negligible [4,8,9,16,17] and involves quite small length scales of about 1 nm
[8]. This may lead to a disproportionally strong spin scattering and calls for a
comparison of continuum and layer-resolved calculations.
This chapter elaborates basic ideas of magnetism and, in a sense, considers

thin films, paramagnetic gases, bulk magnets, small particles, and wires on an
equal footing. Sect. 10.2 is a brief summary of the atomic origin of magnetism,
Sect. 10.3 deals with fundamental aspects of micromagnetism, and Sect. 10.4 is
devoted to grain-boundary and narrow-wall phenomena.

10.2 Intrinsic Properties

Intrinsic properties refer to the atomic origin of magnetism and involve quan-
tum phenomena such as exchange, crystal-field interaction, interatomic hopping,
and spin-orbit coupling [18,19,20,21,22]. Quantities describing the mesoscopic
spin structure, such as the coercivity Hc and the remanence Mr, are extrinsic
(real-structure related) [14,23,24,25], but intrinsic properties enter micromag-
netic equations as local micromagnetic parameters. Table 10.1 shows the mag-
netic moment m, the spontaneous magnetization MS, the Curie temperature
TC, and first uniaxial anisotropy constant K1 for some magnetic materials. Not
included are antiferromagnets, such as NiO, GdFeO3, and Ti2O3, whose long-
range magnetic order vanishes above the Néel temperature TN, and oxides such
as CrO2 (FM), and Y3Fe5O12 (FIM) (see Chaps. 12 and 6).

10.2.1 Magnetic Moment, Exchange, and Magnetization

Magnetic solids contain atoms characterized by a quantum-mechanical magnetic
dipole moment m̂ = −µB(̂l + 2ŝ)/�. Often one considers the net magnetic mo-
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Table 10.1. Intrinsic and structural properties of some magnetic materials (FM =
ferromagnet, FIM = ferrimagnet).

m µ0MS TC K1 Comment

µB/f.u. T K MJ/m3

Fe 2.23 2.15 1044 0.05 Cubic FM

Co 1.73 1.81 1390 0.53 Hexagonal FM

Ni 0.62 0.62 628 -0.005 Cubic FM

SmCo5 8.0 1.07 1020 17.2 Hexagonal FM

Nd2Fe14B 37.6 1.61 585 4.9 Tetragonal FM

BaFe12O19 19.9 0.47 742 0.33 Hexagonal FIM

Fe3O4 4.0 0.63 860 -0.012 Cubic FIM

ment m per formula unit, which is measured in µB. An alternative way of char-
acterizing a material’s net moment is to consider the spontaneous magnetization
MS = dm/dV , measured in A/m, or its flux-density equivalent µ0MS, measured
in T. Here dV is a small volume element containing at least one unit cell. Since
thermal excitations tend to disalign the atomic moments, the spontaneous mag-
netization is temperature-dependent. The zero-temperature spontaneous mag-
netization MS(T = 0) is determined by the atomic moments and often denoted
by M0.
There are two sources of magnetic moment: currents associated with the

orbital motion of the electrons (orbital moment) and the electron spin (spin
moment). Solid-state magnetism originates from the partly filled inner electron
shells of transition-metal atoms. Of particular importance are the 3d iron-series
elements, in particular Fe, Co, and Ni, and the 4f rare-earth elements, such
as Nd, Sm, Gd, and Dy. On the other hand, 4d palladium-series elements, 5d
platinum-series elements, and actinide elements, such as U, have a magnetic
moment in suitable crystalline environments.
The magnetic moment of iron-series transition-metal atoms in metals (Fe,

Co, Ni, YCo5) and non-metals (Fe3O4, NiO) is given by the spin, so that the
moment, measured in µB, is equal to the number of unpaired spins. The reason
is that the orbital moment is largely quenched (destroyed) by the crystal field,
although the small residual orbital moment (of the order of 0.1µB) is important in
the context of magnetic anisotropy. Rare-earth atoms keep their orbital moments
in metals and non-metals, because their partly filled shells lie deep inside the
atoms and are not very much affected by the crystal field.
Figure 10.1 illustrates that the net magnetic moment depends on the type

of zero-temperature magnetic order. In ferromagnets the atomic moments add,
whereas ferrimagnets and antiferromagnets are characterized by two (or more)
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sublattices with opposite moments. This amounts to a reduction of the net mo-
ment (ferrimagnetism) or to the absence of a net moment (antiferromagnetism).
In order to understand moment formation and magnetic order one has to

start from the many-electron Schrödinger equation (see Chaps. 2 and 5). The
solution of that equation is complicated by Coulomb interactions of the type
1/|r − r′|, where r and r′ are the positions of the interacting electrons. For
non-interacting electrons, the many-electron wave function factorizes, but the
Coulomb repulsion makes such a separation impossible and gives rise to a variety
of intra- and interatomic exchange contributions.
In the case of two electrons and two atomic sites, the problem reduces to the

discussion of three parameters: the hopping parameter t, the Coulomb energy U
necessary to add a second electron into an atomic orbital, and the direct exchange
JD [14]. The direct exchange is always positive, but for interatomic distances of
interest it is not larger than about 0.1 eV, that is smaller than U and t by at
least one order of magnitude. Comparing the energies of the lowest-lying ↑↑ and
↑↓ states yields the effective exchange

Jeff = JD +
U

4
−
√

t2 +
U2

16
(10.1)

From this equation we see that the Coulomb repulsion U and the direct exchange
JD favor ferromagnetism (Jeff > 0), whereas interatomic hopping (t) tends to
destroy ferromagnetism. The reason is that ↑↓ electron pairs in an atomic orbital
are unfavorable from the point of view of Coulomb repulsion, whereas parallel
spin alignment ↑↑ is favorable, because the Pauli principle implies that the two
electrons are in different orbitals. However, this energy gain has to compete
against a hopping-related increase in one-electron energies.

 

Ferromagnet (T = 0)                         Ferromagnet (T = TC)

Micromagnetic configuration (T = 0)       Ferrimagnet (T = 0)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10.1. Magnetic order (schematic). Magnetoresistance involves both zero-
temperature and finite temperature magnetic ordering. Much of the fascination of
advanced magnetoresistive phenomena is based on the intriguing interplay between
microscopic and mesoscopic physics (micromagnetism).
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In oxides, t � U and (10.1) yields Jeff = JD − 2t2/U . Due to the small-
ness of the direct exchange, oxides are often antiferromagnets, but when t = 0
by symmetry, as in CrO2, then JD gives rise to ferromagnetism (Goodenough-
Kanamori rules, see Chaps. 5 and 12). In 3d metals, t � U and (10.1) yields
Jeff = JD+U/4−t. Since U is a largely atomic property, metallic ferromagnetism
is realized for not-too-large hopping, that is for narrow bands (Stoner criterion,
see Chap. 2).
In order to discuss magnetic order, it is necessary to distinguish between

intra-atomic and interatomic exchange interactions. Intra-atomic exchange is
responsible for the formation of atomic moments, whereas interatomic exchange
favors a ferromagnetic (or antiferromagnetic) alignment of neighboring spins.
Typically, the intra-atomic exchange Jintra is much larger than the interatomic
exchange Jinter = J , and atomic moments tend to be quite stable. By compari-
son, it is comparatively easy to disalign neighboring spins by thermal excitation
and – to a lesser extent – by inhomogeneous magnetic fields and polycrystalline
random-anisotropy contributions.
A widely-used approach to discuss interatomic exchange is the Heisenberg

interaction −J ŝ1 · ŝ2 between neighboring spins ŝ1 and ŝ2, where J is an inter-
atomic exchange constant. The derivation of the spontaneous magnetizationMS
of a solid from the corresponding Heisenberg Hamiltonian is a very complicated
problem, but a number of approximations (normalized classical spins, restriction
to nearest-neighbor interactions, mean-field approximation) lead to the simple
result that MS vanishes above the Curie temperature TC = zJ/3kB, where z is
the number of nearest neighbors.
Strictly speaking, the applicability of the Heisenberg model is limited to local-

moment magnets, such as insulating transition-metal oxides and rare-earth met-
als. In 3d metals, the magnetic moment is a band-structure property, involving
at least a few neighboring atoms [14,26]. This leads to non-integer moments per
atom, may yield moment and exchange-constant corrections at grain boundaries
and interfaces, and means that quantities such as J and m should be considered
as atomic parameters.
As indicated in Fig. 10.1, the vanishing of the spontaneous magnetization at

TC reflects the thermally activated rotational misalignment of the atomic mo-
ments. By contrast, the magnitude of the atomic moments remains largely un-
changed [27]. The reason is that atomic moments are supported by intra-atomic
exchange energies of the order of 1 eV (104 K), whereas the interatomic exchange
does not exceed about 0.1 eV. This scenario is realized in both metals and non-
metals, although interatomic hopping in itinerant metals, such as iron, may yield
short-range correlations at and above TC. The magnetization MS considered in
micromagnetism is usually averaged over a few interatomic distances and can be
regarded as a temperature-dependent but field-independent material constant
(micromagnetic parameter). This means, in particular, that micromagnetic phe-
nomena, such as domain formation and hysteresis, are realized by magnetization
rotations.
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Aside from long-range critical fluctuations in the vicinity of TC, the spon-
taneous magnetization is caused by atomic-scale exchange interactions. How-
ever, there is also an exchange energy associated with micromagnetic magne-
tization rotations, such as domains. The local magnetization can be written as
M(r) =MS(T )s(r), where s(r) is the unit vector giving the local magnetization
direction. Heisenberg exchange means that spin misalignment in ferromagnets
(J > 0) costs exchange energy. On a continuum level, the normalized magnetiza-
tion s1/2 = s(r)±b ∂s(r)/∂x of two neighbouring atoms located at r1/2 = ±bex

correspond to the exchange energy

− Js1 · s2 = −J + Jb2
(
∂s

∂x

)2

(10.2)

More generally, any magnetization inhomogenity is punished by an exchange
energy density

dEex

dV
= A (∇s)2 (10.3)

where the exchange stiffness A is of the order of 10 pJ/m (10−11 J/m) for typical
ferromagnets, see Table 10.2.

10.2.2 Anisotropy

The energy of a magnetic solid depends on the orientation of the magnetiza-
tion with respect to the crystal axes, which is known as magnetic anisotropy.
The anisotropy of permanent magnets is high in order to keep the magnetiza-
tion in a desired direction, whereas soft magnets are characterized by a very
low anisotropy. Materials with moderate anisotropy are often used as magnetic-
recording media. In the field of magnetoresistance, anisotropy is a double-edged
issue: high anisotropies enhance the magnetization gradient and the magnetore-
sistance, but they also make the material more difficult to magnetize.
It is convenient to write the magnetization as

M =MS [sin(θ) sin(ϕ)ex + sin(θ) cos(ϕ)ey + cos(θ)ez] . (10.4)

The simplest anisotropy-energy expression is then

Ea = K1V sin2(θ) , (10.5)

where K1 is the first uniaxial anisotropy constant and V is the magnet vol-
ume [28]. Equation (10.5) is widely used to describe uniaxial magnets (hexag-
onal, tetragonal, and rhombohedral crystals) and small ellipsoids of revolution
(fine particles). For K1 > 0 the easy magnetic direction is along the c- (or z-)
axis, which is called easy-axis anisotropy, whereas K1 < 0 leads to easy-plane
anisotropy, where the easy magnetic direction is anywhere in the a-b- (or x-y-)
plane. In cubic magnets there is no unique z-axis, but (10.5) can be used for
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small angles θ (see below). For very low symmetry (orthorhombic, monoclinic,
and triclinic), the first-order anisotropy energy can be written as

Ea = K1V sin2(θ) +K ′
1V sin

2(θ) cos(2ϕ) , (10.6)

where K1 and K ′
1 are, in general, of comparable magnitude. This expression

must also be used for magnets having a low-symmetry shape, such as ellipsoids
having three unequal principal axes, and for a variety of surface anisotropies,
such as that of bcc (011) surfaces.
An expression including second order anisotropy constants is [28]

Ea

V
= K1 sin2(θ) +K2 sin4(θ) +K ′

2 sin
4(θ) cos(4ϕ) . (10.7)

This equation describes tetragonal, hexagonal, rhombohedral and cubic crystals.
Hexagonal and rhombohedral crystals are characterized by K ′

2 = 0 (fourth-order
uniaxial anisotropy), whereas in the tetragonal case K2 and K ′

2 are of the same
order of magnitude.
The anisotropy of cubic crystals is often written as

Ea

V
= Kc

1
(
α2
1α

2
2 + α2

2α
2
3 + α2

3α
2
1
)
+Kc

2 α
2
1α

2
2α

2
3 , (10.8)

where α1 = cos(θ), α2 = sin(θ) cos(ϕ), and α3 = sin(θ) sin(ϕ) are the direction
cosines of the magnetization direction. Analysis of (10.8) shows that Kc

1 > 0
favors the alignment of the magnetization along the (001) cube edges, which is
called iron-type anisotropy, whereas Kc

1 < 0 corresponds to an alignment along
the (111) cube diagonals referred to as nickel-type anisotropy. Comparison of
(10.7) and (10.8) yields K2 = −7Kc

1/8 + Kc
2/8 and K ′

2 = −Kc
1/8 − Kc

2/8.
These relations mean (i) that the constant K1 in cubic materials reflects fourth-
order crystal-field interactions [14] and (ii) that there are only two independent
constants when (10.7) is applied to cubic magnets [14]. Typical Kc

2 values are
0.015, 0.05, and 0.28 MJ/m3 for Fe, Ni, and Fe3O4, respectively.
By definition, there are no odd-order terms in (10.6)–(10.8). Odd-order

anisotropies may be caused by relativistic Moriya-Dzialoshinskii interactions,
exchange biasing, or particular micromagnetic regimes [14,29]. This refers in par-
ticular to uni-directional anisotropies of the type Kud cos(θ), which correspond
to a hysteresis-loop shift.
With respect to the physical origin of anisotropy it is necessary to distin-

guish between magnetostatic and magnetoelectric anisotropies. Magnetostatic
interactions give rise to shape anisotropy, which is illustrated in Fig. 10.2: the
magnetostatic energy of the spin configuration (a) is lower than that of the con-
figuration (b), so that the easy magnetization corresponds to the lowest magne-
tostatic energy. For fine particles (see below), the shape-anisotropy contribution
to K1 is

K1,sh =
µ0
4
(1− 3N)M2

S , (10.9)

where N is the demagnetizing factor of the particle (N = 0 for long cylinders,
N = 1/3 for spheres, and N = 1 for plates). Note that (10.9) and the simplified
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picture Fig. 10.2 do not apply to large particles, where the exchange stiffness
A is not able to ensure a uniform (coherent) spin orientation throughout the
magnet (Sect. 10.3.3).

 

easy  direction hard  direction

(a) (b)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10.2. Shape anisotropy of cubic magnets (schematic). The configuration (a) is
energetically more favorable than the configuration (b), as one can deduce from the
compass-needle analogy.

In non-cubic magnets there is also a magnetostatic contribution to the bulk
anisotropy. However, in most materials the bulk ormagnetocrystalline anisotropy
reflects the competition between the spin-orbit coupling and the electrostatic
crystal-field interaction (magnetoelectric anisotropy) [30]. The crystal field re-
flects the local symmetry of the crystal and acts on the orbits of the electrons
in the partly filled inner shells. The anisotropy is then realized by the cou-
pling of the orbital moments to the spins by the relativistic spin-orbit coupling
HSO = λSO l̂ · ŝ. The spin-orbit coupling has two consequences: (i) it couples
the magnetization (the spin) to the orbital motion of the electrons and (ii) it
creates a small orbital moment in largely quenched magnets. Quenched wave
functions correspond to standing waves of the type cos(2ϕ) and are favorable
from the point of view of electrostatic crystal-field interaction, because they are
able to adapt to the crystal field, but due to the standing-wave character of the
quenched wave function the orbital moment and the anisotropy are zero. By con-
trast, unquenched wave functions, such as exp(2iϕ), do not split in the crystal
field benefit from the spin-orbit coupling, because their running-wave character
amounts to a circular current.
Depending on the relative strengths of the crystal-field and spin-orbit inter-

actions there are two limits of interest. Rare-earth 4f electrons are close to the
atomic core and exhibit a strong spin-orbit coupling, whereas the crystal field
felt by the 4f electrons is rather small. This means a rigid coupling between spin
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and orbital moment, and the magnetocrystalline anisotropy is given by the elec-
trostatic interaction of the generally aspherical 4f charge cloud with the crystal
field [14]. Although the 4f crystal field is much smaller than the crystal-field
acting on iron-series 3d electrons, it creates a high rare-earth anisotropy con-
tribution (Table 10.1). The much smaller anisotropy of 3d magnets is explained
by the quenching of the orbital moment due to the crystal field. In the limit of
complete quenching, 〈̂l〉 = 0 and K1 = 0, but in reality the weak 3d spin-orbit
coupling acts as a perturbation and yields some admixture of running-wave char-
acter, a small residual orbital moment, and some anisotropy.
In order to illustrate the origin of the 3d anisotropy we consider two d orbitals,

such as |Ψ1〉 = |xy〉 and |Ψ2〉 = |x2 − y2〉. The Hamiltonian is

H =


A0 0

0 −A0


+ 2λSO cos(θ)


 0 i

−i 0


 , (10.10)

where the crystal-field parameter A0 describes the electrostatic energy of the
two orbitals in the crystal field, cos(θ) is the angle between spin direction and
z-axis and the factor 2 is the magnetic quantum number of the d orbitals. Diag-
onalization of (10.10) yields the energy eigenvalues

E± = ±
√

A2
0 + 4λ

2
SO cos2(θ) . (10.11)

By expanding E− into powers of the small quantity λ2SO/A2
0 we obtain the

second-order anisotropy energy

Ea =
2λ2SO

A0
sin2(θ) . (10.12)

An equation of this type was first derived by Bloch and Gentile [30]. The cor-
responding orbital moment scales as λSOµB/A0 [14]. Note that the qualitative
result (10.12) applies to both metallic and non-metallic 3d magnets, but in met-
als the crystal-field splitting must be replaced by the band width [21]. To make
quantitative predictions one has to extend (10.10) by including all occupied 3d
orbitals and all unperturbed crystal-field or band-structure states.
The magnetocrystalline anisotropy is closely related to the magnetoelastic

anisotropy, because strained crystals can be regarded as unstrained crystals
having slightly different atomic positions. Magnetoelastic anisotropy is partic-
ularly important in cubic magnets, where uniaxial stress gives rise to uniaxial
anisotropy contributions. The magnetoelastic contribution to the first anisotropy
constant is (see e.g. [14])

K1,me =
3λSσ
2

, (10.13)

where σ is the uniaxial stress and λS is the saturation magnetostriction. Exper-
imental room-temperature values of λS are −7 × 10−6 for iron, −33 × 10−6 for
nickel, 40× 10−6 for Fe3O4, −1560× 10−6 for SmFe2, 75× 10−6 for FeCo, and
practically zero for Fe20Ni80 (permalloy).
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As the spontaneous magnetization, anisotropy constants are temperature de-
pendent: atomic excitations lead to the occupation of excited levels, and in the
limit of very high temperatures all levels are occupied with equal probability
(zero anisotropy). Note that the temperature equivalent of anisotropy energies
per atom does not exceed about 1 K, but the switching of individual spins into
states with reduced anisotropy is largely suppressed by the strong inter-atomic
exchange.
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Fig. 10.3. Typical major M-H hysteresis loop.

10.3 Basic Micromagnetism

As mentioned in the introduction, magnetic properties derived from the hystere-
sis loop are extrinsic properties, because they describe the real structure of the
magnet rather than the atomic (intrinsic) behavior. Figure 10.3 shows a typ-
ical M -H hysteresis loop. Note that hysteresis loops are usually corrected for
the demagnetizing field −NM by plotting the magnetization as a function of
the internal field H −NM . In general, this skewing (shearing) correction makes
the hysteresis loops more rectangular. Major or limiting hysteresis loops are ob-
tained by starting from a fully aligned magnet where M(r) = MSe. This is
achieved by applying a large positive field. The loop is then obtained by moni-
toring the volume-averaged magnetization as a function of the external magnetic
field H.Minor loops are obtained if the maximum applied field ±H is insufficient
for complete saturation. They lie inside the major loop and therefore include a
smaller area than the major loop. Virgin curves (initial curves) are obtained
on increasing H from zero after thermal demagnetization, that is after heating
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beyond TC. B-H hysteresis loops are used, for example, to determine the energy
product of permanent magnets [14].

E
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Fig. 10.4. Origin of coercivity: hysteresis involves metastable energy minima.

The most important extrinsic properties are the remanent magnetization or
remanence Mr which remains in a magnet after switching off a large magnetic
field and the coercive force or coercivity Hc that is the reverse field at which
the average magnetization vanishes. Coercivity describes the stability of the re-
manent state and gives rise to the classification of magnets into hard magnetic
materials (permanent magnets), semi-hard materials (storage media), and soft
magnetic materials. Modern permanent magnets exhibit broad hysteresis loops
with coercivities of order 1 T (0.8 MA/m), whereas semi-hard materials used in
storage media exhibit narrow but rectangular hysteresis loops having coercivi-
ties of the order 0.05 T (40 kA/m). The coercivity of storage media is sufficient
to assure the remanence of the stored information without requiring powerful
and bulky writing facilities. Other extrinsic properties, such as the permanent-
magnet energy product and loop squareness, go beyond the exclusive considera-
tion of Mr and Hc. The strong real-structure dependence of extrinsic properties
is seen, for example, from the fact that the coercivity of technical iron doubles
by adding 0.01 wt.% nitrogen [25]. The reason is that the interstitial nitrogen
yields a local modification of K1 which has a disproportionally strong impact on
the motion of domain walls.
The explanation and determination of extrinsic properties is generally very

complicated, and only in a few cases it is possible to use simple hysteresis mod-
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els. One example is the coherent-rotation or Stoner–Wohlfarth model, which
describes the hysteretic behavior of a uniformly magnetized particle (Fig. 10.4).
However, truly one-dimensional energy landscapes, such as E(θ) in Fig. 10.4,
are rarely encountered in practice. Most magnetization processes of interest are
incoherent, and the associated energy landscape is multidimensional. For exam-
ple, the applicability of the Stoner–Wohlfarth theory is limited to very small
particles, and even in the case of single-domain particles (Sect. 10.3.3) the mag-
netization reversal may be incoherent. A further complication is that the involved
micromagnetic equations are nonlocal and nonlinear, and only in a few cases it
has been possible to obtain physically transparent solutions.

10.3.1 Coherent Rotation

The Stoner–Wohlfarthmodel [31] assumes that the magnetization remains coher-
ent (uniform) throughout the magnet, as in Figs. 10.2 and 10.4. This is justified
for very small particles or very thin films or wires, where the interatomic ex-
change is able to keep the spins parallel throughout the magnet (see Sect. 10.3.3).
Incorporating the shape anisotropy into K1, the magnetic energy of an

aligned uniaxial Stoner–Wohlfarth particle is

E

V
= K1 sin2(θ) +K2 sin4(θ)− µ0MSH cos(θ) , (10.14)

where H is the external magnetic field, applied in the z-direction, and Mz =
MS cos(θ). The last term in this equation is the Zeeman energy −µ0 m · H,
which describes the interaction of a magnetized body with the external field.
Putting H = 0 in (10.14) yields a variety of zero-field spin configurations.

When both K1 and K2 are positive, then minimization of (10.14) yields easy-
axis anisotropy (θ = 0). On the other hand, when both K1 and K2 are negative,
then the magnetization lies in the basal plane: easy-plane anisotropy, Θ = π/2.
A particularly interesting regime is the easy-cone magnetism occurring if the
conditions K1 < 0 and K2 > −K1/2 are satisfied simultaneously [14,29]. The
tilt angle between the z-axis and the easy magnetization direction is given by

θc = arcsin



√

|K1|
2K2


 . (10.15)

Since the temperature dependences of K1 and K2 are generally different (K2 is
often negligible at high temperatures), the preferential magnetization direction
may change upon heating (spin-reorientation transition). A similar film-thickness
dependent transition is observed in films where surface and bulk anisotropy
contributions compete.
For K2 = 0, stability analysis of (10.14) yields the coherent-rotation nucle-

ation field

HN =
2K1

µ0MS
(10.16)
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at which the θ = 0 state (Mz = MS) becomes unstable. In terms of Fig. 10.4,
this instability refers to the vanishing of the local energy minimum at Hc = HN
and leads to a rectangular hysteresis loop.
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Fig. 10.5. Dependence of the magnetization on the angle θ between field and easy axis
for a uniaxial magnet. Dashed lines indicate magnetization jumps.

Equation (10.16) translates the anisotropy constant K1 into a field quantity,
namely the anisotropy field Ha = HN. It may be used as a coercivity esti-
mate, although it almost invariably overestimates the coercivity by one order
of magnitude. This discrepancy, known as Brown’s paradox, is explained by the
prevalence of incoherent magnetization processes in real magnets. For anisotropy
fields in more complicated magnets see Ref. [14].
Many materials of interest in spin electronics are polycrystallites (nanocrys-

tallites) or powders. Ignoring interparticle interactions, which are discussed in
the following sections, we can describe those materials as ensembles of Stoner–
Wohlfarth particles, characterized by a coherent rotation of the magnetization.
Figure 10.5 shows hysteresis loops of uniaxial Stoner–Wohlfarth particles for dif-
ferent angles θ between the applied magnetic field and the crystallite’s c-axis. The
magnetic behavior of the material is then obtained as a superposition of Stoner–
Wohlfarth loops. For uniaxial magnets the resulting remanence Mr = MS/2,
whereas for iron-type (K1 > 0) and nickel-type (K1 < 0) cubic magnets,Mr/MS
equals 0.832 and 0.866, respectively. In the case of uniaxial magnets, the coer-
civity is equal to 0.479Ha.
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10.3.2 Domains and Domain Walls

Until now we have neglected the mutual magnetostatic dipole interaction be-
tween atomic moments. The magnetostatic dipole field created by a magnet’s
own magnetization is given by

Hd(r) =
1
4π

∫
dV ′ 3(r − r′)(r − r′) · M(r′)− |r − r′|2M(r′)

|r − r′|5 . (10.17)

(a)                           (b)                            (c)

+ +

- -

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10.6. Magnetostatic self-energy and flux closure (schematic). As implied by
(10.17), the spin configurations (b) and (c) are more favorable than the configuration
(a). The transition between domains is realized by a domain wall (grey area).

Due to a self-interaction contribution, this field differs by M/3 from the
internal magnetostatic field obtained from Maxwell’s equations. However, mag-
netic fields couple as M ·H to the magnetization, so that any term proportional
to M ·M =M2

S amounts to a physically irrelevant shift of the zero-point of the
self-interaction energy −(1/2)µ0

∫
Hd · MdV [32], and the physics of magneto-

static self-interaction is fully contained in (10.17).
By expressing (10.17) in terms of the magnetic charge density −∇·M it can

be shown that the magnetostatic self-interaction energy is particularly low when
there are no magnetic charges at the magnet’s surface. From Fig. 10.6 we see
that the absence of surface charges is linked to flux closure in the magnet. More
generally, magnetostatic interactions tend to yield magnetic domains of opposite
magnetization directions [23,24,33,34]. This explains why the net magnetization
〈M(r)〉 of many magnets is equal to zero, despite M(r)2 =M2

S throughout the
magnet. For example, two pieces of soft iron do not attract each other, and to
exert a force on a soft magnet one needs to destroy the domains by an external
field. There are many different domain patterns of interest in the context of
magnetoresistance (see particularly Chaps. 14 and 15).
A common feature of all domain structures is that the domains are separated

by comparatively sharp domain walls [23,24]. The reason for the formation of
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Fig. 10.7. Bloch wall lying in the y-z-plane (schematic). The arrows show the local
magnetization direction.

domain walls is that the magnetization inside the domains lies along easy direc-
tions, whereas the transition between two easy magnetization directions involves
energetically unfavorable spin orientations. Magnetocrystalline anisotropy favors
narrow domain walls, but (10.5) shows that narrow walls, that is large magneti-
zation gradients, are unfavorable from the point of view of exchange.
The domain-wall width is estimated very easily from dimensional arguments

[23]. The domain-wall width is determined by the anisotropy constant K1 and
the exchange stiffness A, which are measured in J/m3 and J/m, respectively, so
that the only length and the only wall energy derivable from these parameters
are the wall-width parameter δ0 = (A/K1)1/2 and the wall-energy parameter
γ0 = (K1A)1/2, respectively. This means that the domain-wall thickness tends
to be much larger than the interatomic spacing but is much smaller than typical
domain sizes.
In order to make quantitative predictions one has to consider specific wall

geometries. Figure 10.7 shows a K1-only Bloch wall, where the wall thickness
δ = πδ0 and the wall energy γ = 4γ0 [14,35]. The 180◦ Bloch wall shown in
Fig. 10.7 is frequently encountered in uniaxial magnets. Other important wall
configurations are thin-film 180◦ Néel walls, where the magnetization vector
remains in a plane (in the z-x-plane in Fig. 10.7), and 90◦ walls observed in
cubic crystals. Typical domain-wall widths are 5 nm and 100 nm for hard and
soft magnetic materials, respectively.
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The magnetostatic dipole interaction favors domain formation, but since the
creation of domain walls costs energy, there are no walls if the gain in magneto-
static energy is smaller than the wall energy. For example, the wall in Fig. 10.7b
– indicated by the dotted line – corresponds to a wall energy γπR2. The com-
peting gain in magnetostatic energy is roughly equal to half the single-domain
energy, that is µ0M2

SV/12, so that domain formation is favorable for particles
whose radius exceeds a critical single-domain radius

Rsd � 36
√
AK1

µ0M2
S

. (10.18)

This value varies between a few nm in soft magnets and about 1 µm in hard
magnets.
It is important to note that the critical single-domain radius is an equilib-

rium property and therefore largely unrelated to hysteresis. As illustrated in
Fig. 10.4, hysteresis involves energy barriers and metastable states, and in hard
magnetic materials, where K1 is large, the structural length scales associated
with hysteresis and coercivity are much smaller than Rsd.
The critical single-domain radius can also be written as Rsd = 36κlex, where

κ =

√
K1

µ0M2
S

(10.19)

is the magnetic hardness parameter and

lex =

√
A

µ0M2
S

(10.20)

is the exchange length. The exchange length lex is the length below which atomic
exchange interactions dominate typical magnetostatic fields. For example, we
will see that lex determines the coherence radius Rcoh below which interatomic
exchange is able to ensure coherent rotation. It also determines the thickness of
soft-magnetic films below which Néel walls are energetically more favorable than
Bloch walls and the grain size of two-phase magnets below which the hysteresis
loops look single-phase like.
Table 10.2 shows typical micromagnetic parameters. Note that magnetically

very hard and very soft materials are characterized by κ � 1 and κ � 1,
respectively, whereas lex = 3 nm for a broad range of magnetic materials.

10.3.3 Hysteresis and Coercivity

In order to explain the hysteresis loop of magnetic materials one needs to trace
the local magnetization M(r) = MSs(r) as a function of the applied field H.
The starting point is the magnetic energy functional Em obtained by adding the
exchange energy (10.3), the anisotropy energy, the magnetostatic self-energy, as
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Table 10.2. Micromagnetic parameters at room temperature. (The values for Fe and
Ni are uniaxial estimates).

µ0MS A K1 δ γ lex Rsd H0

Material κ

T pJ/m MJ/m3 nm mJ/m2 nm nm T

Fe 2.15 8.3 0.05 40 2.6 1.5 0.12 6 0.06

Co 1.76 10.3 0.53 14 9.3 2.0 0.46 34 0.76

Ni 0.61 3.4 -0.005 82 0.5 3.4 0.13 16 0.03

BaFe12O19 0.47 6.1 0.33 14 5.7 5.9 1.37 290 1.8

SmCo5 1.07 22.0 17 3.6 77 4.9 4.35 764 40

Nd2Fe14B 1.61 7.7 4.9 3.9 25 1.9 1.54 107 7.6

implied by (10.17), and the Zeeman energy −µ0M · HV describing the interac-
tion with the applied field. For K1-only uniaxial magnets we obtain

Em =
∫ [

A

(∇M

MS

)2

− K1

(
n · M

MS

)2

− 1
2
µ0M · Hd(M)− µ0M · H

]
dV

(10.21)
where n(r) is a unit vector denoting the crystallite’s easy axis.
As illustrated in Fig. 10.4, hysteresis indicates difficulties in reaching the

global (free) energy minimum. As a crude rule – and aside from the Stoner–
Wohlfarth-like reversal in weakly interacting particle ensembles – there are two
main coercivity mechanisms: nucleation and pinning. Nucleation determines the
coercivity of nearly homogeneous magnets and means that the magnetization
reversal occurs immediately after the original magnetization state becomes un-
stable. Examples are the Stoner–Wohlfarth nucleation field (10.16), which de-
scribes the reversal of the magnetization of an isolated small particle, and the
localized nucleation [38] in submicron particles. Pinning governs the magnetiza-
tion reversal in strongly inhomogeneous magnets and means that the coercivity
is determined by the interaction of domain walls with structural inhomogenities.
To realize magnetization reversal in pinning-controlled magnets, the reverse ex-
ternal field must be larger than some (de)pinning (or propagation) field. One
typical pinning mechanism involves inhomogenities whose anisotropy constant
is higher than that of the main phase: since high anisotropies yield high domain-
wall energies, the penetration of the wall into the highly anisotropic regions is
energetically unfavorable. This mechanism is also known as repulsive pinning,
whereas the capturing of a wall in a low-anisotropy region is referred to as at-
tractive pinning.
The trapping of walls by a small number of powerful pinning cen-

ters is called strong pinning. A simple strong-pinning expression is Hp =
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(dγ(x)/dx)/(2µ0MS), where γ(x) is the average wall energy as a function of
the wall position [14,36]. By contrast, pinning caused by a large number of very
small pinning centers, such as atomic defects, is called weak pinning. In the
case of weak pinning, the wall energy is averaged over a distance of order δB,
so that the density of pinning centers determines the pinning strength. Another
mechanism involves many nucleation centers, so that the magnetization reversal
is realized by the pinning-controlled growth and coalescence of a large number
of domains.
In the hysteresis loop, the difference between nucleation and pinning is seen

most easily from the virgin curves, which are obtained by thermal demagneti-
zation. Figure 10.8 illustrates this distinction. After thermal demagnetization,
domain walls in nucleation-controlled particles are very mobile, so that satu-
ration is achieved in very low fields. By contrast, pinning centers impede the
domain wall motion in both the virgin-curve and major-loop regimes.
For structurally (morphologically) homogeneous ellipsoids of revolution hav-

ing the easy axis parallel to the axis of revolution, the nucleation problem can be
solved exactly [12,13,14]. This is of some practical importance, because acicular
(wire- or needle-like) magnets, fine particles, and thin films can be approximated
by prolate, spherical, or oblate ellipsoids of revolution. The calculation consists
of two steps: (i) the linearization of (10.21), as discussed in Sect. 10.4, and (ii)
solving the resulting stability problem by eigenmode analysis. The correspond-
ing eigenmodes m(r) =M(r)− MSez are known as nucleation modes, and the
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Fig. 10.8. Virgin curves for pinning-controlled and nucleation-controlled permanent
magnets.
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field at which the instability of the m(r) = 0 state occurs is the nucleation field.

Coherent rotation                          Curling  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10.9. Nucleation modes in homogeneous ellipsoids of revolution (top view on the
equator plane). The arrows show m(r).

soft or semihard very hard

Bulging                          Clamped curling

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10.10. Nucleation modes in spheres surrounded by a hard-magnetic shell (top view
on the equator plane). The arrows show m(r) for the core phase; in the surrounding
shell, m(r) = 0. In both cases, the radial dependence of m is given by spherical Bessel
functions and localized in the soft region.

The nucleation field is [13,14]

HN =
2K1

µ0MS
+
1
2
(1− 3N)MS (10.22)

for coherent rotation and

HN =
2K1

µ0MS
− NMS +

cA

µ0MSR2 (10.23)
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for the so-called curling mode. Here the radius R = Rx = Ry refers to the two de-
generate axes of the ellipsoid, and c = 8.666 for spheres (N = 1/3) and c = 6.678
for needles (N = 0). Coherent rotation and curling are realized in small magnets
(R < Rcoh) and large magnets (R > Rcoh), respectively, where the coherence
radius Rcoh is of the order of 5lex [37]. Note that these radii are independent of
K1. Figure 10.9 compares the coherent-rotation and curling modes. Coherent
rotation is favorable from the point of view of exchange, but the exchange en-
ergy necessary to realize curling competes with the gain in magnetostatic energy
associated with the flux-closure clearly visible in Fig. 10.10. We also deduce that
the flux-closure contribution dominates the exchange in large magnets.
The coherent-rotation and curling modes are delocalized, that is the nucle-

ation mode extends throughout the magnet. In general, inhomogenities lead to a
localization of the nucleation mode [38]. An exactly solvable case is a soft or semi-
hard magnetic sphere surrounded by a hard-magnetic shell. Eigenmode analy-
sis then yields a bulging mode characterized by the symmetry of the coherent-
rotation mode but incoherent due to the radial dependence of m [39].
Figure 10.10 compares the bulging mode, realized for small particles, with

the corresponding modified curling mode realized in large particles. The ultimate
reason for the incoherent character of the bulging mode are the boundary condi-
tions at the interface between the two magnetic phases. This yields not only an
increase of the nucleation-field coercivity, as compared to Fig. 10.9, but also a
singularity at the interface. In Sect. 10.4 we will see under which circumstances
grain boundaries are sources of magnetoresistance.

10.3.4 Time Dependence of Magnetic Properties

The non-equilibrium character of magnetization processes means that magnetic
properties are time-dependent. There are two basic types of time-dependent mag-
netic phenomena. Fast atomic processes lead to equilibrium on a local scale and
realize intrinsic properties on sub-nanosecond time scales. For this reason, intrin-
sic properties can be regarded as equilibrium properties, and the energy func-
tional (10.21) is also known as the micromagnetic free energy. Micro-magnetic
processes are much slower, because atomic thermal excitations have to compete
against many-atom energy barriers. For example, permanent magnetism relies
on the fact that typical energy barriers are much larger than kBT [14]. Interme-
diate time scales are used, for example, to explain phenomena such as spin-wave
resonance (see Chap. 15).
In a strict sense, ferromagnetism is limited to infinite magnets, because ther-

mal excitations in finite magnets cause the net moment to fluctuate between
opposite directions and yield – ultimately – a zero spontaneous magnetization.
However, the corresponding equilibration time may be very large, and in practice
it is often difficult to distinguish the magnetism of small particles from true fer-
romagnetism. In structurally inhomogeneous magnets (two-phase magnetism),
each non-equivalent site i exhibits a local spontaneous magnetization Mi(T ),
and there is only one common Curie temperature. However, when the size of the
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inhomogenities is larger than about 1 nm, it is quite difficult to distinguish the
inhomogeneous ferromagnet from a mixture of two phases [40].
A manifestation of extrinsic dynamics is that freshly magnetized permanent

magnets loose a small fraction of their magnetization within the first few hours,
which is known as magnetic viscosity. Typically, the magnetization loss is loga-
rithmic, ∆M = −S ln(t), where S is the magnetic-viscosity constant [14,36,41].
A related effect is that coercivity depends on the sweep rate dH/dt used to mea-
sure the loops: Hc is largest for high sweep rates, that is for fast hysteresis-loop
measurements.
Small energy barriers, realized for example in fine-particle ensembles, give rise

to superparamagnetism. First, in particles whose radius is smaller than about
1 nm the external magnetic field is unable to produce saturation, because it
cannot compete against thermal excitations. Secondly, there is a blocking radius
below which thermal excitations are able to overcome anisotropy-energy barriers.
Blocking radii scale as (T/K1)1/3 and are of the order of 5 nm for semi-hard
materials.

10.4 Grain–boundary Magnetism

Real polycrystalline (nanocrystalline) magnets exhibit intergranular exchange
coupling and magnetostatic interactions between grains. Strong intergranular
interactions lead to the breakdown of the picture of individual grains and the
magnetic reversal becomes a cooperative effect involving many grains.
A simple model is the Preisach model, where the interactions appear as

random magnetic fields acting on the individual crystallites [36], but internal
interaction fields are unable to give an appropriate description of cooperative
magnetization processes. In fact, the validity of the internal-field approach is
restricted to the non-cooperative ensembles, where the width of the switching-
field distribution P (Hc) of the (non-interacting) crystallites is larger than the
magnitude of the interaction fields [42].
A better approach is the random-anisotropy theory [43,44,45,46], which fo-

cuses on the competition between interatomic exchange and random anisotropy.
There are two main random-anisotropy effects: (i) the exchange favors paral-
lel spin alignment throughout the magnet, and the remanence is exchanged-
enhanced and (ii) in the limit of strong exchange interactions the coercivity of
isotropic magnets vanishes. The relative strength of the intergranular exchange
can be expressed in terms of the dimensionless parameter A/K1R

2, where R is
an average grain radius. This parameter shows that intergranular exchange is
most effective in the limit of small grain sizes.
However, the original random-anisotropy theory cannot be used when two

or more structural length scales are involved. This refers in particular to the
effect of sharp grain boundaries [42,47]. Here we present a linear grain-boundary
theory, which applies to weakly misaligned grains and is compatible with the
scattering mechanism mentioned in the introduction.
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10.4.1 Model

Consider an ensemble of exchange-coupled misaligned grains characterized by
the local exchange stiffness A(r) and the local easy direction n(r). The starting
point of the calculation is (10.21). Since SMR scales as (∇M)2, we can restrict
ourselves to short length scales, where magnetostatic interactions are of sec-
ondary importance (Sect. 10.3.2), and incorporate the self-interaction field into
H. To linearize the problem we consider weakly misaligned grains and small
deviations from perfect spin alignment. Since |M(r)| = MS and |n(r)| = 1, we
can then write

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

n
e M

ma

Ms

z
e z

Fig. 10.11. Unit vectors n(r) and M(r)/MS describing the polycrystalline easy axes
and the local magnetization, respectively.

n(r) =
(
1− a(r)2

2

)
ez + a(r) (10.24)

and

M(r) =MS

(
1− m(r)2

2

)
ez +MSm(r) , (10.25)

where a � 1, m � 1, abd a · ez = m · ez = 0. Figure 10.11 illustrates the
meaning of a and m.
Putting (10.24), (10.25) into (10.21) and taking H = −Hez yields

E =
∫ [

A(r) (∇m)2 +K1 (m − a(r))2 − µ0MSH

2
m2
]
dV . (10.26)

Minimizing this equation with respect to m we obtain

− ∇ (A(r)∇ · m) + (K1 − µ0MSH/2)m = K1a . (10.27)

Next we consider a grain boundary in the y-z-plane, as shown in Fig. 10.12.
This is reasonable, because the perturbation m(x) caused by the grain bound-
aries decays quite fast in the interior of the grains [42]. Since a = aey and
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Fig. 10.12. Two neighboring grains and grain boundary. In this section, both contin-
uum and layer-resolved configurations are discussed.

m = mey, (10.27) now simplifies to

− ∂

∂x

[
A(x)

∂m

∂x

]
+
[
K1 − µ0MSH

2

]
m = K1a(x) (10.28)

where a(x) is equal to aI and aII in the respective grains I and II.

10.4.2 Boundary Conditions

As one can see from Fig. 10.10, grain or phase boundaries lead to singularities
in the magnetization (M or m) and may be potential sources of a pronounced
magnetoresistance. The boundary conditions implied by (10.27) and (10.28) have
been discussed in [48]. For an interface located at x0, integration from x0 − ε to
x0 + ε yields [

A(x)
∂m

∂x

]
x0−ε

=
[
A(x)

∂m

∂x

]
x0+ε

. (10.29)

This means that a jump in A(r) changes the slope of the perpendicular magne-
tization component m.
Figure 10.13 shows that the boundary conditions (10.29) give rise to a variety

of scenarios. In Fig. 10.13a, a phase I characterized by a large exchange stiffness
is coupled to a phase II having a low A. When the anisotropy of phase I is
very high, then the mode m(r) is localized in the phase II characterized by low
or moderate anisotropy, regardless of the value of A in the two phases. This
regime is illustrated in Fig. 10.13b and realized, for example, in the composite
Fig. 10.10. Of particular interest in spin electronics is the case where two grains
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Fig. 10.13. Boundary conditions at interfaces: (a) interface between two phases of
different exchange stiffness, (b) interface between hard and soft regions, (c) effect of
grain-boundary region characterized by reduced exchange, and (d) reduced exchange
coupling at interface. Note that (d) may be interpreted as a special case of (c) where
B = 0.

are separated by a grain-boundary region (B) of reduced exchange stiffness.
As shown in Figs. 10.13c and d, this leads to a quasi-discontinuity ∆m of the
magnetization with a strong potential for SMR.
In order to calculate the magnitude of the quasi-discontinuity, we assume a

thin grain-boundary region of thickness t whose exchange stiffness A′ is smaller
than the bulk exchange stiffness A (Fig. 10.13c). Putting, for simplicity, H = 0
in (10.28) [49], we see that m = a well inside the grains. It is therefore useful
to consider the quantity ∆ = ∆m/|aII − aI |, that is the fraction of the mag-
netization variation concentrated in the grain-boundary region. In the bulk, the
differencem−a decays exponentially [42], so that the calculation of∆ amounts to
incorporating the boundary condition (10.29). After short calculation we obtain

∆ =
1

1 + 2A
′δ

πAt

. (10.30)

For t = 0, the quasi-discontinuity vanishes (∆ = 0), whereas zero intergran-
ular exchange (A′ = 0) leads to ∆ = 1. On the other hand, since t tends to
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be much smaller than the wall width δ, an exchange enhancement at the grain
boundary (A′ > A) has no major impact on ∆.

10.4.3 Layer–Resolved Spin Structure

Equation (10.28) describes ferromagnets on a continuum level, so that magneti-
zation processes cannot be resolved on an atomic scale. For example, as indicated
in Fig. 10.13d, grain boundaries tend to be atomically thin, and it is difficult to
judge whether (10.30) remains valid in this limit.

n0 1-1 2

m

m

m

n

I

II

∆m

 
 
 
  

 
 
 
 
 
 
 
 

Fig. 10.14. Spin structure in the vicinity of the grain boundary. The jump ∆m means
a quasi-discontinuity of the magnetization at the grain boundary.

In a layer-resolved analysis, as envisaged in Fig. 10.12, (10.28) must be re-
placed by

E =
∞∑

n=−∞

[
Jn,n+1

(Mn − Mn+1)
2

M2
S

− K1S0t0
(nn · Mn)

2

M2
S

− µ0Mn · HS0t0

]

(10.31)
where S0 is the interface area, Jn,n+1 � A(r)t0 is the interlayer exchange cou-
pling between adjacent atoms in the n-th and (n+1)-th layers, and each layer
(index n) has a thickness t0 = t. Restricting ourselves to the remanent state
(H = 0) and using the approximation (10.25) we obtain, aside from a physically
irrelevant zero-point energy,

E =
∞∑

n=−∞

[
Jn,n+1(mn − mn+1)2 +K1S0t0(mn − an)2

]
. (10.32)
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Here the interatomic interface exchange J0,1 = J ′ is smaller than the bulk ex-
change Jn,n+1 = J for n �= 0 (Fig. 10.12). Minimizing (10.32) yields the set of
equations

Jn,n+1(mn − mn+1) +K1S0t0mn = K1S0t0an (10.33)

subject to the boundary conditions mn = aI/II for n = ±∞.
A typical solution is shown in Fig. 10.14. For n < 0 and n > 1, the depen-

dence of the layer-resolved perpendicular magnetization contribution mn on n
is exponential, (mn − aI/II) ∼ exp(±n/λ), and the decay length is

λ =
1

arcosh(1 +K1S0t0/2J)
(10.34)

In the interesting limit K1S0t0 � J this reduces to the bulk-type wall-
width expression (J/K1S0t0)1/2. As in the continuum limit, the reduced interface
exchange yields a quasi-discontinuity∆m = m1−m0. ForK1S0t0 � J , we obtain

∆ =
√
K1S0t0J√

K1S0t0J + 2J ′ . (10.35)

Aside from the use of atomic parameters, this result is very similar to (10.30).
Due to the quadratic dependence of SMR on the magnetization gradient,

most of the magnetoresistive scattering by weakly coupled grains is associated
with the quasi-discontinuity ∆. From (10.30) and (10.35) we deduce that ∆ = 1
for A′ = 0 and J ′ = 0, respectively, that is for zero intergranular exchange.
Compared to ordinary domain-wall scattering, this corresponds to an increase
of the magnetoresistance by a factor of order δ/t0, that is of the order of 100 for
many materials of interest in spin electronics. However, a comparatively weak
intergranular exchange is sufficient to yield a strong reduction of∆. Taking t = t0
(one layer of reduced exchange) we find that ∆ = 1/2 when A′/A and J ′/J are
about t0/δ, that is of the order of 0.01. This means that SMR materials are not
very forgiving with respect to residual intergranular exchange.

10.5 Concluding Remarks

A key finding of this chapter is that reduced exchange at grain boundaries yields
a quasi-discontinuity of the magnetization, corresponding to a disproportionally
strong domain-wall type magneto-resistance. By comparison, enhanced exchange
in a thin grain-boundary region has no major effect on the spin structure. The
same is true for anisotropy changes in the grain-boundary region, because the
effect of anisotropy inhomogenities averages over at least a few nm.
The atomic origin of the grain-boundary exchange is of secondary importance

in micromagnetism, because it is treated as a parameter. In any case, there is
no conduction without some rudimentary exchange, so that the intergranular
exchange may be small but is always nonzero.
The results obtained in Sect. 10.4 do not depend very much on whether one

uses continuum or layer-resolved models. However, this does not mean that the
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relation between intrinsic and extrinsic properties at grain-boundaries is trivial,
and a thorough and comprehensive description of the magnetic and magnetore-
sistive phenomena at grain boundaries remains a challenge.
Since the wall-width parameter δ scales as (A/K1)1/2, the domain-wall scat-

tering is particularly strong in hard magnets, but in that case one needs un-
desirably large magnetic fields to change the spin configuration. Reduced inter-
granular exchange has a much more favorable effect on the magnetoresistance.
From the point of view of spin-projecting magnetoresistance (SMR), the ideal
magnetoresistive material is a hard-soft nanocomposite characterized by very
weak intergranular exchange [50]. Of course, the realization of such a material
remains a real challenge to atomic theory and magnet processing.
Note, finally, that SMR requirements are similar to the situation encoun-

tered in magnetic recording, where pronounced intergranular exchange between
semi-hard grains leads to ’interaction domains’ and reduces the storage density
[51]. By contrast, two-phase permanent magnetism relies on a strong exchange
coupling between hard and soft regions [42].
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Abstract. With the development of magnetic devices and new materials for spin
electronics on the sub-micron scale, we consider the relevant properties of electronic
noise in magnetic solid-state microstructures. We review the most common types of
electronic fluctuations in materials, namely, thermal noise, shot noise, 1/f noise and
random telegraph noise. In each case, the discussion is illustrated by recent reports on
electronic noise in magnetic materials and devices. We show that the resistance fluctua-
tion measurement is an unique tool to probe the dynamics of magnetic instabilities and
their coupling to the charge carriers via spin dependent scattering processes on a nano-
metric scale. We finally consider electronic noise in promising materials and devices for
spin electronic applications like half metallic oxides, CMR perovskites and GMR-based
magnetic sensors. Comments on recent results point out fundamental properties of the
electronic and magnetic ground states which can be extracted from noise measure-
ments. Special attention is paid to the noise behaviour and the signal-to-noise ratio in
magneto-electronic applications.

11.1 Introduction

A nuisance, an unwanted signal mixed in with the desired signal... are common
descriptions of electronic noise in measurement and instrumentation. It is true
that voltage or current fluctuations impose practical limits on the performance
of an electronic circuit or a measuring device. As a function of the measured
entity, the noise level is usually defined in nV/

√
Hz, nA/

√
Hz, nT/

√
Hz..., which

corresponds to the magnitude of the fluctuating quantity normalised to a 1 Hz-
frequency bandwidth. The obvious challenge for any form of application or lab-
oratory experiment is to increase the minimum detectable value of the desired
variable; this naturally requires a reduction of the different sources of electrical
noise interfering with the measurement.

However, for more than fifty years, physicists have understood that noise
is not always a nuisance: the electronic noise inherent in materials or devices
conveys fundamental information on the system dynamics near equilibrium. On
many occasions, it has been demonstrated that intrinsic fluctuations are finger-
prints of the internal dynamics. A “dirty” signal with random electrical fluctua-
tions may reveal intrinsic properties of the conductivity, such as the microscopic
behaviour of the charge carriers and their coupling to lattice defects, electronic
traps, magnetic momentum.(for reviews see [1,2,3,4,5,6]). For example, very re-
cently, noise studies have provided experimental evidence for macroscopic quan-
tum tunnelling in the magnetisation reversal processes of mesoscopic systems

M.J. Thornton and M. Ziese (Eds.): LNP 569, pp. 232–273, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



11 Electronic Noise in Magnetic Materials and Devices 233

[7]. In doped calcium manganites, the observation of a giant random telegraph
noise has been interpreted in terms of intrinsic dynamic phase separation in the
ferromagnetic ground state of the perovskite [8].

With the development of spin electronics [9,10,11] and nanoscale devices,
various materials like magnetic oxides [12], half metallic ferromagnets [13], fer-
romagnetic semiconductors [14], giant magnetoresistance structures and tunnel
junctions [15] must be reconsidered with respect to spin polarisation of the charge
carriers and spin dependent conduction processes. Electrical noise studies are
therefore of major interest both for estimating the intrinsic noise level and for
a basic understanding of electronic mechanisms. Besides, the size reduction to-
ward nanoscale devices tends to strongly enhance the apparent noise magnitude
of the system. Noise studies as a function of the lateral size and the design of
the devices provide an insight into the limiting factors for any application. It
has been shown that, with the realisation of tiny samples, some active sources of
noise may induce colossal electrical fluctuations with a lack of Gaussianity [16].
The question of a limiting volume below which a device may become too noisy
to use unfortunately has to be considered.

This chapter is focused on the description of electronic noise in magnetic
materials and devices, mainly considering electronic fluctuations in the range
between very low frequencies up to few tens of MHz. After recalling the statis-
tical tools usually employed to deal with stochastic processes (Sect. 11.2), we
present the most common types of electronic noise in condensed matter, namely,
thermal noise, shot noise, 1/f noise and random telegraph noise (Sect. 11.3).
The text refers to recent reports on noise studies in magnetic materials and
identification of the intrinsic sources of noise. The last section is devoted to elec-
trical noise studies in leading materials for spintronic applications (Sect. 11.4).
Final comments concern the limiting noise factors in magnetic devices and more
specially in high density magnetic read-heads.

11.2 Mathematical Treatment

The electronic noise we shall be discussing corresponds to random fluctuations
in the current flowing through a material or in the voltage measured across the
terminals of the sample. The random aspect of the fluctuations versus time means
that we deal with a stochastic process: the instantaneous values of the fluctuating
entity cannot be predicted. Besides, most of the electronic noise we observe in
materials and devices are stationary functions of time. The statistical analysis
is independent of the time at which the signal is recorded. In the following,
the specific mathematical treatments related to physical processes which exhibit
some drifts of average values over time will be ignored.

A fluctuating quantity ν(t) can be characterised by a double statistical ap-
proach, in time and frequency space. We present an overview of mathematical
techniques usually applied in solid states physics (for a detailed description see
[1,4]).
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11.2.1 The Time Domain Analysis

The basic treatment of a fluctuating quantity ν(t) in time space consists in
calculating the average value ν̄, the variance σ2, the probability density function
P (ν) and the auto-correlation function Ψν(τ) as follows:
The average value:

ν̄ = lim
T→∞

1
T

∫ T/2

−T/2
ν(t)dt . (11.1)

T is the duration of the observation.
The variance:

σ2 = (ν(t)− ν̄)2 = δν2 = ν2 − ν̄2 . (11.2)

The probability density function P (ν): corresponds to the normalised distribu-
tion function of the magnitude of the fluctuations. When the fluctuations result
from the sum of a large number of independent and random events, the fluctu-
ating quantity follows a Gaussian law:

P (ν) =
1√
2πσ2

exp
[
− (ν − ν̄)2

2σ2

]
. (11.3)

For a Gaussian fluctuation, defined by an average value ν̄ and a variance σ2, 68%
of the voltage magnitude lies between ν̄ ± σ. It is worth mentioning that once
the electrical noise is recorded, the first statistical analysis of the fluctuations
consists in checking their Gaussian behaviour. If it is so, a second-order statistical
treatment corresponding to the power spectral density calculation will contain
all the characteristics of the signal. In case of non-Gaussian behaviour, a higher
order treatment is required (Sect. 11.3.4).
The auto-correlation function:

Ψν(τ) = ν(t)ν(t+ τ) = lim
T→∞

1
T

∫ T/2

−T/2
ν(t)ν(t+ τ)dt . (11.4)

It provides a measure of the memory of the process. In other words, how long
does a given fluctuation persist at later times? The auto-correlation function
at zero-time is equal to the mean square value of the fluctuations for ν̄ = 0,
Ψν(0) = ν(t)2.

11.2.2 The Fourier Analysis of the Fluctuating Quantity

A powerful tool to specify a stochastic process is the distribution of the power of
the signal in the frequency domain. Let us suppose a noise process ν(t) observed
between the times [−T/2;T/2] and assumed zero outside. The total energy of
the signal E is defined by:

E =
∫ ∞

−∞
[ν(t)]2 dt . (11.5)
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It can be expressed as a function of the Fourier transform VT (iω) of ν(t), using
Plancherel’s theorem (with ω = 2πf and i2 = −1):

E =
1
2π

∫ ∞

−∞
|VT (iω)|2dω (11.6)

The average power of the fluctuations P is therefore defined by the relationship:

P = lim
T→∞

1
T

∫ ∞

−∞
[ν(t)]2 dt = lim

T→∞
1
2π

∫ ∞

0
2

|VT (iω)|2
T

dω . (11.7)

From the above equation, we directly derive the expression of the power spectral
density (PSD) of the fluctuating process:

Sν(ω) = lim
T→∞

2
|VT (iω)|2

T
. (11.8)

In case of a statistically stationary process, the auto-correlation function and
the PSD are related through the Wiener–Khintchine theorem:

Ψν(τ) =
1
2π

∫ ∞

0
Sν(ω) cos(ωτ)dω , (11.9)

which is a Fourier transform relationship; the inverse gives rise to:

Sν(ω) = 4
∫ ∞

0
Ψν(τ) cos(ωτ)dτ (11.10)

If the fluctuating entity is a voltage fluctuation, units of Sν(f) are V2/Hz.
It is interesting to notice that the integration of the PSD over all frequencies
is equal to the variance of the signal. It is also called the net magnitude of the
noise:

Ψν(0) = δν(t)2 =
∫ ∞

0
Sν(f)df , with ν̄ = 0 . (11.11)

A well-known example of direct application of the Wiener–Khintchine the-
orem in solid-state physics consists in considering a relaxation process defined
by a relaxation time τ1. This mechanism is characterised by an exponentially
decaying auto-correlation function Ψν(τ) defined by:

Ψν(τ) = Ψν(0) exp
[
− |τ |

τ1

]
. (11.12)

Using the Wiener–Khintchine theorem, a straightforward integration yields
the expression for the power spectral density of the fluctuating quantity coupled
to the relaxation process:

Sν(ω) = 4
∫

Ψν(0) exp
[
− |τ |

τ1

]
cos(ωτ)dτ = 4Ψν(0)

τ1
1 + τ21ω

2 (11.13)

The PSD is therefore a Debye-Lorentzian spectrum with a corner frequency equal
to 1/τ1 and a 1/f2 frequency dependence, above 1/τ1.
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11.3 The Most Common Types of Noise

Electrical noise in solids may originate from various sources such as defect mo-
tion, magnetic domain or spin fluctuations, charge carriers crossing an energy
barrier, electronic traps, current redistribution within inhomogeneous materials.
All these potential microscopic sources behave like “fluctuators”; once they are
activated and physically coupled to the charge carriers constituting the current,
they induce specific resistance or current fluctuations giving rise to the electrical
noise we measure. Despite the random aspect of the fluctuating variable, a clear
classification of the different kinds of noise has been carried out. It is mainly re-
ferring to the frequency dependence of the PSD. We essentially distinguish four
types of electrical noise. The two most frequently encountered are thermal noise
(Sect. 11.3.1) and shot noise (Sect. 11.3.2). These both exhibit a flat PSD and
are rather well understood. Thermal noise is basically used to calibrate the back-
ground noise of an experiment. The third type is “flicker noise” also called “1/f
noise”; it refers to noise with a PSD spectrum of the form 1/fα, with α close
to one (Sect. 11.3.3). The PSD of the fluctuations diverges at low frequencies.
Fluctuations with such spectra have been observed not only in a tremendous
variety of physical phenomena but also in other fields like human biology or
geology. This omnipresence has led to a vast amount of research activity since
the fifties. The last type of noise is random telegraph noise (RTN), which is a
very beautiful and particular case of non-Gaussian fluctuations (Sect. 11.3.4).
The resistance switches back and forth between two or more well-defined states
under the effect of a single electron or one fluctuator and the resistance value
of each state remains constant over time. Compared to 1/f noise, the RTN is a
more recently studied phenomenon. In most cases, its manifestation is a direct
consequence of a reduction of the dimensionality of the material toward the mi-
cron scale. Statistical study of lifetimes in the different states provides extremely
rich information on the dynamics and the energy scales of the switching events
as well as the related electronic properties.

The challenge for the physicist is to distinguish the microscopic origin of
the electrical fluctuations from an almost “standard” and macroscopic transport
measurement [17]. Through several examples of noise studies, mainly focussed
on magnetic materials, we shall see how noise measurement and analysis are
unique tools to probe the electronic and magnetic ground state. Investigations
aiming at the general understanding of the solid state also offer insight into
current industrial preoccupations. On the way to noiseless transistors or giant
magnetoresistive (GMR) read-heads, the first step is an academic study of the
electrical noise, with the understanding of its magnitude, its origins and, why
not, its eradication.

11.3.1 Thermal Noise

The first observations of thermal noise, also called the Johnson or Nyquist noise,
are due to Johnson in 1927 [18]; these were followed by the theoretical anal-
ysis developed by Nyquist in 1928 [19]. The Nyquist approach was based on
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thermodynamic calculations of the exchange energy between resistive elements
in equilibrium. Thermal noise appears in all resistors, resulting from a random
thermally-activated motion of charge carriers in equilibrium with a thermal bath.

The phenomenological description of its origin is based on the thermal ac-
tivation of a large number of independent and random “events”. One event is
related to a departure from the equilibrium state (like one random electron mo-
tion) followed by a relaxation of the system to compensate the local perturbation
of the charge distribution. A Fourier transform analysis of the thermal noise in
all resistors yields a power spectral density of the terminal voltage fluctuations
expressed by: Sν(f) = 4kBTR and the mean square noise voltage is equal to:

V 2 = 4kBT∆fR . (11.14)

Here, ∆f is the frequency bandwidth in which the voltage is measured, R is
the resistance value of the resistor and kBT is the thermal energy. For example,
the rms noise voltage measured at the terminals of a 1 kΩ resistor in a 1 MHz
frequency bandwidth is Vrms = 4 µV. This means that 68% of the voltage mag-
nitude fluctuations fall within ±4 µV. Matching the frequency bandwidth of the
experiment with the frequency domain of the desired signal is an obvious and
well-known way to improve the signal-to-noise ratio of the measurement.

We note that the PSD of the thermal noise is not frequency dependent, which
is why it is also called “white” noise. Quantum corrections are expected at high
frequencies (above the microwave regime) taking into account the lifetimes of
the charge carriers. The Sν(f) spectrum is then given by:

Sν(f) = 4kBTR {hf/kBT [1/2 + 1/ (exp (hf/kBT )− 1)]} . (11.15)

11.3.2 Shot Noise

First experimental evidence and discussions dealing with shot noise are due to
Schottky in 1918 [20]. This noise is related to the passage of the current across
an energy barrier; it is a non-equilibrium form of noise. The elementary pro-
cesses giving rise to shot noise are usually described by considering the current
fluctuations in a thermionic tube: electrons which are randomly emitted from
the cathode and flow to the anode under the influence of the electric field effect
generate a current which fluctuates around a mean level. The fluctuations are
caused by the random and discrete nature of the electronic emission as charac-
terised by the work function. It is a direct consequence of the quantum character
of the charge carriers. The PSD of the shot noise is also a flat spectrum expressed
by: SI(f) = 2eI. The current noise corresponds to:

Ish =
√
2eI∆f . (11.16)

I is the average current and ∆f the frequency bandwidth. Quantum corrections
involving the lifetimes τ of the charge carrier emission affect the PSD above
microwave frequencies and yield:

SI(f) = 2eI
[
sin(ωτ/2)

ωτ/2

]2
. (11.17)
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It should be emphasised that correlations between current pulses induce a
space charge smoothing and consequently, a reduction of the shot noise magni-
tude. For this reason, shot noise is not observable in a homogeneous resistor.

Much work has been devoted to the characterisation of shot noise in semi-
conductor devices (for a complete review, see [4,6,21]). Very recently, Novak
et al. [22] have found experimental evidence for shot noise in ferromagnetic-
insulator-ferromagnetic tunnel junctions. The tunnel magnetoresistive junctions
(TMR) with a 35% signal at room temperature exhibit voltage fluctuations with
a cross-over from Johnson noise to shot noise as a function of the bias voltage,
see Fig. 11.1. In the absence of interaction between tunnelling electrons and the
oxide layer, the tunnel junction may be viewed as a ballistic conductor with a
very small transmission probability. Shot noise dominates the flat part of the
PSD, once enough current is applied through the junction to overcome the ther-
mal noise. For MHz and higher frequency applications like TMR read-heads,
shot noise may set the optimum sensitivity of the sensor. The set-up point of
the bias voltage should be a compromise between the absolute V (H) voltage,
the decreasing ∆V (H)/V (H = 0) MR value versus the applied electric field and
the shot noise level defined by the current flowing through the device.

To summarise, Johnson noise and shot noise are respectively the equilib-
rium and non-equilibrium noise both with a flat PSD for frequencies into the
microwave band, but with different microscopic origins. They are inherent and
correspond to the lowest noise level one may expect in a material or a device.
Johnson noise provides a direct calibration of an electronic transport experi-
ment: the background noise, in zero current, must tend to the thermal noise of
the sample. The noise level above the theoretical thermal noise is usually esti-
mated in dB, originates from the electronic equipment, the impedance mismatch
and an inefficient shielding and grounding of the circuit [17,23].

However, in most cases, once a current is applied through a material, voltage
fluctuations appear at low frequency, which can be several orders of magnitude
greater than the Johnson or the shot noise. These fluctuations are expected to
constitute a limiting factor for low frequency applications. Their PSD spectrum
follows a 1/f dependency.

11.3.3 1/f Noise

The commonly called “1/f noise” refers to fluctuations of a physical variable
with a PSD following a 1/fα law, where the exponent α is equal or close to 1.
This noise is also called “flicker” or “excess” noise: “excess” actually means in
excess compared with the thermal noise level. Its first characterisation goes back
to Johnson’s experiments on current fluctuations of the electronic emission in
the thermionic tube (1925) [24]. In addition to the shot noise, Johnson measured
current noise whose spectral density increases with decreasing frequency f . The
striking aspect of the 1/f noise which motivates a vast amount of research ac-
tivity (one third of all publications on noise problems deal with 1/f noise) is its
ubiquitous nature. Over the last fifty years, it has been observed in a tremendous
variety of systems, far beyond the borders of solid state physics: 1/f fluctuations
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Fig. 11.1. Power spectra Sν(f) of the voltage fluctuations as a function of dc current
bias measured in a [3 nm Co84Fe16/2 nm Al2O3/8 nm Co84Fe16] tunnel junction [22].
For successive spectra from the bottom to the top, I = 0, 3, 6, 12, 24 and 36 µA in
panel (a) and 0, 0.75, 1.5, 3, 6, 12, 24 and 36 µA in (b). Shot noise is the prevailing
noise at 4.2 K and at low biases, but it is outweighed by the 1/f -like noise (Sect. 11.3.3)
at higher currents and higher temperatures.

have been reported in earthquakes studies [25], in the time dependence of the
water level of the river Nile [26], in music [27], in biology [28]. Ionic current fluc-
tuations through a neuro-membrane exhibit a 1/f spectrum [29], and so does
the human heartbeat frequency which fluctuates with a PSD close to 1/f below
0.3 Hz [30].

Restricting the description of the 1/f noise to electrical noise measurements
in condensed matter, we point out that 1/f fluctuations have been observed on
the voltage probes in a vast number of different materials, like semiconductors,
metallic and magnetic films, spin glasses, heterogeneous conductors, supercon-
ductors in the normal state, tunnel junctions, electronic devices, magnetic sen-
sors [22,31,32,33,34,35,36,37,38] (based on AMR, CMR or TMR) and also in half
metallic ferromagnets [39] and CMR perovskites [8,39,40,41,42,43,44,45,46,47,48]
independently of the dimensionality of the material.
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In all materials and devices mentioned above, the 1/f fluctuations are re-
lated to resistance fluctuations δR(t). These are measured by applying a cur-
rent I and deducing the resistance fluctuations from the voltage fluctuations
δV (t) = IδR(t) at the terminal probes. The applied current does not create the
fluctuations but just reveals them, above the white noise. This intrinsic nature
of 1/f noise was clearly demonstrated in a major experiment performed by Voss
and Clarke in 1976 [49]: in zero current, fluctuations of the variance of the John-
son noise exhibit a 1/f power spectrum. This rules out any contribution of the
driving current to the resistance fluctuations.

In the following, we describe the relevant properties of the 1/f electrical noise.
Comments will be offered on some open questions and paradoxes encountered in
the 1/f noise studies. Finally, after a brief overview over the existing theories,
we report on 1/f noise in various magnetic materials. Attention will be paid to
the intrinsic electrical and magnetic properties which can be deduced from the
1/f noise measurements.

Fundamental Aspects of Electrical 1/f Noise

The ubiquitous nature of this noise in various systems suggests the existence of
an universal theory. Much work has been devoted to this ambitious approach.
However, the available experimental evidence shows that the origins of the 1/f
noise are quite different according to the material. It is now accepted that the 1/f
spectrum is more a common mathematical feature, which can be phenomeno-
logically modelled in a rather simple way.

Resistance Fluctuations As has been specified in the introduction, 1/f elec-
trical noise on the voltage probes is measured by applying a current through
the sample. The basic experimental configuration is shown in Fig. 11.2. Conse-
quently, the noise level of the voltage is proportional to the square of the applied
current Sν(f) ∝ V 2 ∝ I2. This is of fundamental experimental interest as it
allows a clear discrimination between the intrinsic 1/f noise coming from the
sample and noise due to the preamplifier used for the measurement, which, in
some case, may strongly dominate all other sources of noise.

The Size Effect In a rough approach, it is normally assumed that the noise level
is inversely proportional to the volume of the sample between the probes [4,5].
The size effect is simply explained by the following argument: when the size of the
sample is reduced, the size of the noise sources remains unchanged. Therefore,
they induce stronger fluctuations on the overall electronic transport. The same
argument holds for the number of charge carriers involved in the noisy volume:
the charge carrier fluctuations due to electronic trapping and de-trapping affect
the conductivity much more if the total number of charge carriers is small. Two
straightforward consequences of the size effect on the effective noise level are the
following: one way to measure the 1/f noise in a rather quiet material such as
a well crystallised metal consists in working on thin films with reduced lateral
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sizes. This experimental approach holds as long as the noise originates from
independent and local sources. And finally, the 1/f resistance fluctuations may
cause a drastic degradation of the signal-to-noise ratio for small devices in low
frequency applications (Sect. 11.4.3).

A Major Paradox The main feature of the excess noise is its frequency de-
pendence proportional to 1/fα. The α exponent has been determined in metals,
semiconductors, oxides, electronic devices, nanocomposites.(see [1] and refer-
ences therein). It ranges from 0.8 to 1.4. The frequency domain in which most
of the experiments are performed is between 10−2 and 104 Hz. However, exper-
imental attempts have also been made to probe the very low frequency depen-
dence of the noise. In 1974, Calayamides [50] has measured the PSD of resistance
fluctuations in an operational amplifier down to 10−6.3 Hz, which requires times
of averaging of the order of a month! No experimental evidence of any low fre-
quency cut off in the 1/f dependency has been observed. This immediately
raises a fundamental paradox in the magnitude of the noise level. We know that
the auto-correlation function at zero-time, in other words, the variance of the
fluctuations is defined by:

δV 2 ∝
∫ ∞

0

1
fα

df . (11.18)

This physical variable diverges at the upper (lower) limit if α < 1 (α > 1) and
at both limits logarithmically for α = 1. If no frequency limits are experimen-
tally observed, it follows that the 1/f resistance-fluctuation variance is infinite!
In practice, high frequency limits naturally exist and correspond to the finite
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Fig. 11.2. Example of required sample geometry for electrical contacts outside the
current lines. (b) Standard 4 probe noise measurement with a dc applied current (p.a
= preamplifier). (c) Noise experiment in a 5 probe configuration with a ac applied
current [17].
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Fig. 11.3. Noise experiment analysis in a calcium doped manganite thin film at 150 K.
Notice the Gaussian behaviour of the resistance fluctuations and the 1/f noise spectrum
well above the thermal noise for an applied current density of 102 A/cm2.

scattering time of charge carriers or more basically to the frequency for which
the 1/f noise sinks into the background noise. For the low frequency divergence,
the problem remains open: a low frequency cut-off inherent to theories or to the
lifetime duration of the system should be present. In practice, the stability of the
experiment and the patience of the experimentalist usually dictate the existence
of a low frequency limit which necessarily yields a finite experimental value of
the fluctuation variance.

A General Formula to Quantify the 1/f Noise The 1/f resistance fluc-
tuations are customarily quantified by a phenomenological equation given by
Hooge in 1969 [51,52] which can be expressed as follows:

Sν(f) = γHV 2/Ncf . (11.19)
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Here, V is the applied voltage between the probes, Nc is the number of charge
carriers in the noisy volume and γH is a dimensionless constant for α = 1,
which is called Hooge’s constant and refers to the noise level once the PSD is
normalised by the volume and the applied voltage. Over the years, Hooge’s con-
stant was found to be equal to 2 × 10−3 in very different materials [53], which
was quite exciting in the search for an universal theory. Hooge’s expression also
implies that the noise level is independent of the temperature. However, since
the eighties, strong experimental evidence has been found that Hooge’s constant
actually ranges from 10−6 to 107 and is temperature dependent. The 2 × 10−3

value seems to be more a contact noise characteristic related to the sample
geometry than a real estimate of fluctuations in bulk materials [54]. Besides,
the normalisation by the number of charge carriers is strongly questionable be-
cause it would imply that each mobile carrier individually carries the noise. This
property is inconsistent with the 1/f law: we cannot assume fluctuations due
to individual charge carriers which last longer than the duration of the mobile
charges within the sample [2]. Despite the above arguments against a physical
meaning of Hooge’s equation, it remains a very convenient way to normalise the
noise level between different systems and to provide an estimate of how noisy
a device is at room temperature. The lowest γH values have been obtained for
bismuth and semiconductors with very clean surfaces. 10−3-10−2 are the “stan-
dard” Hooge’s constants for well crystallised metallic films and semiconductors.
And the noise level is usually between 4 and 6 orders of magnitude higher in
magnetic materials, oxides and nanocomposites.

Other Aspects Rather than going through some controversial aspects of the
1/f fluctuation properties in detail, we simply mention them.

The first aspect is related to the surface versus volume effects: at present the
debate of this problem still continues without having reached a categorical con-
clusion [5]. The surface or volume locations of the noise sources are strongly de-
pendent on the material. With an obvious risk of oversimplifying the physics, we
may report experimental evidence which demonstrates that surface treatments
and an applied electric field perpendicular to the surface of a semiconductor
drastically affect its noise level. A significant similarity has been found between
the gate voltage dependence of the resistance fluctuations and the density of
surface states in a n-MOSFET [55]. Therefore, much evidence for surface mech-
anisms has been put forward in semiconductors, without excluding bulk effects.
An opposite conclusion is reached for metallic films in which the noise level is
inversely proportional to the film thickness [56].

The second dispute concerns the physical origin of the noise. In the Drude
model, it is well known that the number of carriers N and their mobility µ gov-
ern the resistivity; so it is of sense to expect that: δR/R = +δN/N + δµ/µ. Do
resistance fluctuations originate from the carrier number fluctuation δN or from
the mobility fluctuation δµ? Once again, the debate which has been going on for
a long time has not reached a definite conclusion since more recently it has been
confirmed that it naturally depends on the physics of the system. In semicon-
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ductors, it is thought that most of the 1/f noise comes from charge trapping and
de-trapping in localised states in the close vicinity of the surface. The trapping
effect clearly affects both the mobility and the charge carrier number. In metals,
if one only involves the number fluctuation, the noise level may only be reached
with an unrealistic number of traps, comparable to the density of free carriers
[4]. Experiments have been attempted to distinguish the contributions of δN
and δµ to the noise level. The idea consists in measuring both the 1/f voltage
fluctuations on standard probes and those on the Hall voltage [54,57,58,59]. In
some cases, the ratio between resistance noise and Hall voltage fluctuations plus
the sign and the magnitude of their correlation give rise to pertinent information
like the fraction of mobility fluctuations and the separate contribution of the ma-
jority and minority free carriers [54]. However, it seems that such experimental
approaches do not lead to any definite conclusion and it is quite surprising that
no recent results refer to the cross correlation between the Hall and the standard
voltage fluctuations.

We conclude the survey of general aspects of 1/f resistance noise with com-
ments on the microscopic properties of the fluctuations and the related experi-
ments. It is of great interest to probe the anisotropy of the conductivity fluctu-
ations. This provides evidence on the microscopic behaviour of the fluctuators
responsible for the noise and their coupling to the resistivity. The relevant param-
eter is the asymmetrical factor S ranging from 1 (in case of scalar fluctuations)
to −1 (for 2D traceless fluctuations) [1,60]. Noise experiments in metallic films
have shown a strong asymmetry of the fluctuations. This strongly supports the
concept of noise in metals originating from the hopping of defects on sites whose
symmetry is lower than the point-group symmetry of the crystal [1]. Interesting
attempts have also been performed to probe the correlation length of the conduc-
tivity fluctuations. Initially, the motivation was to give evidence for frequency-
dependent spatial cross correlation in samples where the noise was supposed to
be dominated by some heat-diffusion processes. However, measurements on a
variety of metallic films and semiconductor devices show no correlation down to
millihertz and into a distance scale of the order of few µm [61,62]. Therefore,
within a micron scale, the 1/f noise is generated locally and not transported.

In the frame-work of noise experiments on a micron scale and below, we
do expect that a new promising area of noise studies is now open with the
achievement of nano-structured materials and devices. For example, nano-scale
ferromagnets patterned in a cross-shape can be used to probe the resistance
fluctuations asymmetry in case of magnetic domain fluctuations. We speculate
that the asymmetry parameter may probe the anisotropic magnetoresistance or
the magnetic domain anisotropy.

Besides, let us imagine a magnetic structure in which we locate a unique do-
main wall. The measurement of resistance fluctuations through the wall should
be strongly influenced by its scattering processes. It may probe intrinsic prop-
erties like the time-scale of spin dynamics within the magnetic inhomogeneity.
Furthermore, the achievement of magnetic materials with sizes comparable to
the mean free path of the charge carriers or the spin-coherence length induces a
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crossover in the conductivity processes toward the ballistic regime. Noise mea-
surements are thought to be an accurate tool to investigate the new conduc-
tivity regime [63]. The spatial correlation of the fluctuations within few tens of
nanometers should also be revisited.

Theoretical Approaches

The ubiquitous nature of the electrical 1/f noise in very distinct systems requires
theoretical approaches which should be consistent with various physical origins
of the noise sources. This task is extremely difficult. Many theories that have
actually been proposed in an attempt to explain the 1/f frequency dependence
of the PSD lack a reasonable physical basis.

The most customary concept on which most of the theoretical approaches
are based is the concept of superposition of random and independent events
coupled to the resistivity [64,65]. If one assumes the existence of a single two
level process (TLP), also called a “fluctuator” with one relaxation time τ , it has
been demonstrated by the use of the Wiener–Khintchine theorem (Sect. 11.2.2)
that the PSD of the fluctuations is a Lorentzian spectrum. If one considers now
a physical system with a distribution of relaxation times D(τ), associated with
independent TLPs, the corresponding PSD is defined by:

Sν(f) ∝
∫

τ

1 + ω2τ2
D(τ)dτ . (11.20)

Considering a distribution of relaxation times equal to D(τ) ∝ 1/τ , between
two relaxation times τ1 and τ2, the integration of the Lorentzian yields:

Sν(f) ∝ 1
f

for τ−1
2 ≤ f ≤ τ−1

1 . (11.21)
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Fig. 11.4. Mathematical construction of 1/f noise: a superposition of a large number
of Lorentzian spectra related to Two Level Processes (a) with a broad energy-barrier
distribution (b) yields a 1/f spectrum of the fluctuating entity (c).
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In case of thermally activated processes following an Arrhenius law [65],
τ = τ0 exp(E/kBT ), where τ0 is the attempt frequency, usually related to the
phonon frequency in solids and E is the activation energy in a symmetric TLP,
see Fig. 11.4, the energy distribution required to provide 1/f noise between
[τ−1
2 ; τ−1

1 ] is then:

D(E) = constant for E1 = kBT ln
(
τ1
τ0

)
≤ E ≤ E2 = kBT ln

(
τ2
τ0

)
.

(11.22)
This concept exists since 1950 and shows how 1/f fluctuations are “mathe-

matically” built from a superposition of independent and random TLPs with a
wide distribution of relaxation times whose time-scale is coherent with low fre-
quency processes. That is the key of the ubiquitous character of the 1/f noise,
even if no light is cast on the physical origins of the fluctuators. In the following,
we present a brief description of some well accepted models and the domains in
which they have been successfully applied.

The McWhorter Model The McWhorther model is probably the most pop-
ular and recognised model of 1/f noise directly based on the concept developed
above [66]. In this model, applicable to semiconductors, the 1/f fluctuations are
related to fluctuations of the number of charge carriers at the semiconductor-
oxide interface. The resistance fluctuations arise from tunnelling exchange of
free charge carriers between the conduction channel near the surface and the
traps lying in the oxide layer covering the surface. A distribution of traps in-
side the oxide layer induces a distribution of tunnelling distance D(d) which has
to be consistent with the 1/f noise frequency domain. For tunnelling events,
τ = τ0 exp(d/l0). Let us fix τ0 
 10−12 s and l0 
 0.1 nm. Then, a constant dis-
tribution of the tunnelling distance between 1 and 4 nm yields an excess noise
with a 1/f spectrum ranging from 10−8 to 106 Hz, which is large enough to
account for the 1/f noise measured in the experimental frequency window. The
McWhorter model is widely used to interpret the 1/f noise in electronic devices;
it also supports the strong noise difference between the JFET and the MOSFET.

The Dutta–Dimon–Horn Model Following the du Prè concept [65], in 1979
Dutta, Dimon and Horn (DDH) proposed a model based on a superposition of
thermally activated random and independent processes with a broad distribu-
tion of transition energies [67]. Under major assumptions which will be explained
later, the richness of their approach is to extract from the temperature depen-
dence of the PSD slope α(T ) the shape of the transition energy distribution
D(E) responsible for the resistance fluctuations. In some cases, the shape of the
energy distribution provides a clear signature of the microscopic origins of the
fluctuators.

In the framework of the DDH model, for a given temperature and within
an experimental frequency range [fmin; fmax] transition energies in the range
[kBT ln(f0/fmax); kBT ln(f0/fmin)] are accessible. This domain is called the ex-
perimental energy window. Then, at a given temperature T , we probe the noise
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arising from fluctuators whose transition energies belong to this energy window.
For a 10−2-103 Hz frequency domain, at 300 K and f0 
 1012 Hz, the observable
fluctuations necessarily involve transition energies between 0.45-0.9 eV. Sweep-
ing the temperature from 4 to 300 K probes the energy scale between 6 meV
and 0.9 eV. As a consequence, the PSD spectrum slope reflects the shape of the
energy distribution within an energy window defined by T and the experimental
frequency domain.

Assuming a large distribution of thermally activated and symmetric two level
fluctuations, the analytical calculation of the integral:

Sν(f) ∝
∫

τ0 exp (E/kBT )
1 + ω2τ20 exp (2E/kBT )

D(E)dE , (11.23)

permits the prediction of α(T ) values from the experimental Sν(f, T ) data [67]:

α(T ) = − ∂ ln(Sν(f, T ))
∂ ln(f)

= 1− 1
ln(ωτ0)

[
∂ ln(Sν(f, T ))

∂ ln(T )
− 1
]
, (11.24)

and an estimate of the energy distribution responsible for the fluctuations ob-
served in the experimental frequency and temperature window:

D(E) ∝ 2πfSν(f, T )/kBT . (11.25)

Let us notice that a flat D(E) distribution gives rise to a pure 1/f spectrum
and a linear temperature dependence of the noise level. However, departure from
the linearity with α(T ) values different from 1 implies a non-zero derivative
of the energy distribution, ∂D(E)/∂E �= 0. Assuming α(T ) > 1 (respectively
α(T ) < 1) implies an excess in the density of the low (high) energy fluctuators
and a negative (positive) derivative ∂D(E)/∂E over the energy window.

The DDH model has been essentially applied to noise in metals [67,68]. In the
case of Ag films for example, an energy distribution centred around 0.8 eV has
been found. It is though that the rather high energies associated with the noise
sources correspond to the energy necessary to create and induce atomic defect
hops between equivalent sites in energy [61,69]. The coupling to the resistivity
is due to different effective scattering cross-sections between accessible sites.

The DDH model is based on assumptions which considerably reduce its range
of applicability [2]. Dutta et al. explicitly consider that δR2/R2 �= g(T ), which
means that the net magnitude of the noise is temperature independent. The
number of fluctutators and/or their coupling strength to the conduction pro-
cesses are assumed to be independent of temperature. Such a consideration may
remain correct in degenerate systems with no particular electronic or magnetic
transitions over a large temperature range, like in 3d transition metals.

Otherwise, the introduction of a temperature dependent function g(T ) is
required in the Sν(f, T ) expression:

Sν(f, T ) ∝
∫

g(T )
τ(E)

1 + τ(E)24π2f2
D(E)dE . (11.26)
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The g(T ) function accounts for the temperature dependence of the net mag-
nitude of the noise. It may include, for example, the activation of new fluctuators,
some changes in their coupling to the conductivity process or modifications of the
free carrier number. The final expression of the energy distribution is therefore:

D(E) 
 2πfSν(f, T )
kBT

1
g(T )

, (11.27)

and the predicted α(T ) values are:

α(T ) = 1− 1
ln(2πfτ0)

[
∂ ln(Sν(f, T ))

∂ ln(T )
− ∂ ln(g(T ))

∂ ln(T )
− 1
]
. (11.28)

Several authors have applied this improvement with some success [39,70,71].
The major objection is that even if the shape of g(T ) is inferred from a compar-
ison between the experimental and the predicted α(T ) values, only speculations
can be made regarding its physical origin.

Other Models During the seventies, various studies suggested thermal fluctua-
tions [49] as a possible cause of resistance fluctuations in materials and especially
in metals. This concept considers energy fluctuations which give rise to enthalpy
fluctuations at a constant pressure. The enthalpy fluctuations, usually referred
to as temperature fluctuations, are coupled to the resistivity by the heat capacity
of the specimen Cp and the temperature coefficient of resistance β = ∂R/∂T . A
thermodynamic calculation yields Sν(f, T ) ∝ V 2βkBT 2/Cpf , where V is the ap-
plied voltage. Despite the initial success of this model in certain cases like in man-
ganin, experimental evidence rules out the temperature fluctuation-contribution
to the electrical 1/f noise. The strongest argument against this model is the lack
of space-time correlation of the resistance fluctuations [71].

Among other theories, let us mention the quantum theory of 1/f noise [72],
which assumes that the electrical 1/f noise is a fundamental feature of charge
transport. The current fluctuations through a sample would originate from the
interaction between charge carriers and low frequency photons emitted by the
scattering of carriers by arbitrary potential barriers. Recently, in a search for
a universal mechanism of 1/f noise, De los Rios et al. [73] proposed an ex-
tended version of the concept of self-organised critical systems [74] by intro-
ducing an activation-deactivation process and dissipation. The SOC model con-
siders that systems are driven by their own dynamic which is critical in the
sense that no characteristic time or length scale exists. Numerical calculation
yields a 1/f power spectrum. The new theoretical development reproduces the
hyper-universality and the apparent lack of a low frequency cut-off in the power
spectral density.

1/f Electrical Noise in Magnetic Materials

Clear experimental evidence exists that resistance fluctuations in magnetic ma-
terials are strongly related to the magnetic ordering and its stability versus time.
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Electrical excess noise is indeed a unique tool to probe the equilibrium magnetic
noise (which differs from the Barkhausen noise) in small magnetic volumes or in
magnetic materials with a weak magnetic signal like antiferromagnets. Such mea-
surements provide an insight into the spin or domain fluctuations. In some cases,
the switching relaxation time and the magnetic volume of the fluctuating entities
can be inferred. Let us note that the frequency range [10−2;104 Hz] in which the
electrical 1/f noise is usually observed is consistent with the relaxation time of
a magnetic domain, which depends on its size, the local magnetic anisotropies
and the temperature; these relaxation times usually fall in the range 1 µs-1 Ms.
The coupling between resistance fluctuations and magnetic noise involves spin
dependent scattering processes like the spontaneous resistive anisotropy (SRA),
domain wall scattering, GMR effects.

Fig. 11.5. (a) Flux noise versus frequency for the detection system alone (miniature
SQUID susceptometer) and for the spin-glass Eu0.4Sr0.6S at two different temperatures
above and below the freezing temperature, Tf ∼ 1.53 K [75]. (b) Imaginary part of the
ac susceptibility χ′′(T, 50Hz) deduced from the magnetic noise measurement compared
with the directly measured ac susceptibility at 50 Hz. The units for the susceptibility
are arbitrary.

Only a few examples are reported in the literature of direct magnetic equilib-
rium noise measurements in small magnetic materials. W. Reim et al. [75] have
used an integrated miniature SQUID susceptometer chip at low temperature to
measure the magnetic fluctuations of a spin glass, in which 1/f magnetic noise
was predicted due to the intrinsic broad spectrum of relaxation times [76]. They
simultaneously measured the 1/f magnetic spectrum and the AC susceptibility
of a (15 µm)3 Eu0.4Sr0.6S sample, see Fig. 11.5. From the PSD of the magnetic
noise and the imaginary part of the susceptibility, they demonstrated the va-
lidity of the fluctuation-dissipation theorem [77] below and above the freezing
temperature. The F-D theorem establishes a direct relationship between a fluc-
tuating quantity and a source of noise responsible for the fluctuations. In the
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present case, the applicability of the F-D theorem means that the equilibrium
magnetic fluctuations are related to the dissipation that arises when the system
is driven by an external magnetic field. As a consequence, noise measurements
also offer an alternative way to estimate χ′′ in zero field.

Fig. 11.6. Normalised noise power of the resistance fluctuations, α, at 0.1 Hz as a
function of temperature for a Ni thin film [80]. The smooth curve is a guide to the eye.
The second and smaller noise peak corresponds to TC .

We now come back to electrical noise. In case of antiferromagnets, the mag-
netic signal related to magnetic domain fluctuations is too small for a direct mag-
netic fluctuation measurement. However, several authors have measured the 1/f
electrical noise in chromium [68,78,79]. A two order of magnitude increase has
been observed when Cr is cooled through the Néel temperature (TN ∼ 320 K).
The strong increase of the resistance fluctuations is related to fluctuations in
the magnetic structure, i.e., the dynamics of the transverse spin-density wave
(TSDW). At low temperatures, well below TN , noise asymmetry studies (the
S parameter) reveal that the electrical noise originates from the rotation of a
fluctuating entity. It has been concluded that the fluctuations come from the
rotation of the polarisation n of the TSDW between two states within volumes
of about 10−16 cm3. Near TN , on small samples (less than 2 × 10−13 cm3), the
time trace of the resistance fluctuations is highly non-Gaussian (Sect. 11.3.4).
This noise is the signature of rotation of the Q vectors of the TSDW domains.
From the magnitude of the resistance steps, the minimum magnetic volume VD

in which the Q vector fluctuates is estimated to be of the order of 3×10−16 cm3.
In Ni thin films [80], the 1/f resistance fluctuations and the temperature

dependence of the PSD have been correlated with spin cluster fluctuations with
temperature dependent cluster volumes. Giordano [80] has measured the 1/f
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electrical noise in Ni from 300 K to above TC (TC ∼ 625 K). His study shows
two maxima in the noise magnitude versus temperature; one around TC and the
other one well below, around 450 K, see Fig. 11.6.

The maximum of resistance fluctuations near TC has been observed in various
ferromagnets and clearly demonstrates the strong influence of domain dynam-
ics on the low frequency electrical noise. In the framework of the DDH model,
Giordano argued that the temperature dependence of the noise with the peak
around 450 K necessarily implies microscopic changes in the fluctuating pro-
cesses. Well below TC , the magnetic correlation length is of the order of the
lattice parameter; the spins fluctuate almost independently from the neighbour-
hood. The fluctuators responsible for the noise are therefore individual spins.
Increasing the temperature induces an enhancement of the magnetic correlation
length; the fluctuators change from an individual spin to spin clusters. According
to Giordano, as TC is approached, the activation energies of the clusters, which
are proportional to the volume, become too large to induce observable fluctu-
ations. Only small clusters, much less numerous, contribute to the 1/f noise.
Such a picture tends to explain the noise level decrease above 450 K and the
change in the reduction of the number of efficient fluctuators predicted by the
DDH model.

Curiously, apart from the above study, little has been reported in the litera-
ture on noise in 3d ferromagnetic epitaxial thin films. New studies on Co or Fe
nano-structured epitaxial ultra-thin layers may give rise to unexpected results
on the magnetic ordering in low dimensional systems.

11.3.4 Non-Gaussian Noise and Random Telegraph Noise (RTN)

The noise with which we have dealt up to now has been exclusively of the Gaus-
sian type. From a statistical point of view, all the information is contained in the
second-order correlation function. As it has been previously described, the com-
mon way to generate such a noise is by the superposition of many independent
sources contributing individually and weakly to the variance of the fluctuating
quantity. In case of a very small number of independent events or if one of them
is much more strongly coupled to the resistivity, then singular events are notice-
able on the resistance time trace. The lack of Gaussianity requires the use of
high-order correlation functions. One technique consists in measuring the spec-
trum of fluctuations in the noise power within the frequency bandwidth of the
ordinary spectrum. This spectrum is called the second spectrum [81].

Non-Gaussian (NG) effects on resistance fluctuations are usually observed
in small samples (below few µm3), once a decrease of the size of the mate-
rial significantly reduces the number of fluctuators. Nevertheless, in rare cases,
mostly related to strongly inhomogeneous materials, NG noise is measured in
macroscopic volumes [40,41,46,82,83]. Fig. 11.7a shows the temperature depen-
dence of the power spectral density of the resistance fluctuations in Fe-SiO2
nano-composite films [83], very close to the percolation threshold, in the metal-
lic regime. A drastic increase of the 1/f noise level is observed when the film
is cooled down to 60 K. Hall effect measurements on the same sample reveal
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Fig. 11.7. (a) Temperature dependence of the normalised 1/f noise Sν(f)/V 2 mea-
sured in a Fex-SiO2 (x ∼ 0.56) nanocomposite thin film [83]. An abrupt increase of
the noise level occurs when the sample is cooled down to 60-70 K. In the inset, one
notices a one order of magnitude increase of the ordinary Hall voltage occurring at the
same temperature in the same film. (b) Resistance fluctuations versus time at different
temperatures. A strongly non-Gaussian noise is observed in the vicinity of 60 K. (c)
The product f × Sν(f) as a function of frequency for several temperatures showing a
maximum at a temperature dependent frequency. In the inset, the frequency at maxi-
mum is shown as a function of inverse temperature; the data follow an Arrhenius law,
from which the activation energy of the fluctuating process responsible for the NG
noise is inferred.

a one order of magnitude decrease of the effective number of carriers at the
same temperature (see inset Fig. 11.7a). Both measurements provide evidence
for a temperature induced electrical transition toward a more insulating regime
in the infinite cluster. Besides, in the close vicinity of the electrical transition,
resistance fluctuations exhibit a strong non-Gaussian behaviour, see Fig. 11.7b.
The non-Gaussian noise around 60 K reveals that one or few “fluctuators” are
active and are related to some change in the conduction process. This has been
discussed in terms of current redistribution in the conducting paths, when the
sample is cooled down to 60 K. The authors interpret the changes in the ordi-
nary Hall constant as a cutting up of the metallic network. In the vicinity of
the singularity, the product f ×Sν(f) of the resistance fluctuations is not flat as
it should be for pure 1/f noise. Rather, this quantity exhibits bumps with the
frequency at the maximum shifting with temperature, see Fig. 11.7c. This is a
clear signature of a thermally activated fluctuator responsible for the NG noise
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around 60 K. A 100 meV activation energy is inferred from the temperature de-
pendence of the frequency peaks (see inset of Fig. 11.7c). This has to be related
in some way to the thermally activated microscopic processes which induce a
cut-off in the percolating network and current redistribution in the vicinity of
60 K. Quantum size effects were put forward as a possible origin of current redis-
tribution. The authors speculate that these could be located in iron constrictions
in the narrowest parts of the metallic paths where these isolate some portions
of the backbone once the energy difference between discrete levels is larger than
kBT .

It is worth mentioning that the analysis of the f × Sν(f) plot which may
exhibit particular shape shifts with temperature is a well known way to estimate
the activation energies of the thermally activated fluctuation processes strongly
coupled to the resistance and responsible for the NG noise [81].

An extreme case of NG noise is Random Telegraph Noise (for a review,
see [84]). It occurs when a single fluctuator or a single electron is involved.
The fluctuation process switches between two states which could be of electrical
or magnetic origin. Each state has a different coupling to charge carriers thus
contributing differently to the overall conductivity; hence the switching results
in discrete jumps in the sample resistance. The time intervals between switching
are random but the two values accessible by the resistance are time independent.
In most cases, the RTN is described by a thermally activated two level process
(TLP). If one assumes an asymmetrical two-well system with an energy barrier
E ± ∆E separating the two states, the average time τi(T,H) spent in the ith

state is expressed by: τi(T,H) = τi,0 exp(Ei/kBT ). A straightforward calculation
of the PSD of the noise produced by the TLP yields [1]:

Sν(f) =
S0

ν(0)

cosh
[

∆E
kBT

] [
cosh2

(
∆E
kBT

)
+ ω2τ2

] , (11.29)

where τ−1 = τ−1
1 +τ−1

2 is the total transition rate and S0
ν(0) is the zero-frequency

spectral density at∆E = 0.The PSD follows a Lorentzian spectrum with a corner
frequency equal to τ−1. We notice that the PSD of the noise decreases for an
asymmetrical (∆E �= 0) double-well as the low energy state is more stable. The
same Lorentzian spectrum is obtained at low temperature when the switching
process is governed by a tunnelling mechanism.

We point out that a statistical analysis of the occupancy lifetimes of the
two states as a function of temperature or an applied electric or magnetic field
provides an unique insight into the energies of the system and its dynamics. Fun-
damental microscopic variables like the energy differences between two states,
the volume of the fluctuating quantity and its intrinsic nature (defect motion,
magnetic domains.) can be inferred. From the experimental point of view, the
delicate task is to stabilise a well-resolved RTN over a long time for statisti-
cal averages. A sporadic behaviour of the RTN has been experimentally found
in various systems like hydrogenated amorphous silicon (a-Si:H) [82] or charge-
ordered manganites [40] (Sect. 11.4.2). The “instabilities” in the RTN activation
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have been theoretically predicted [86] and interpreted in terms of current re-
distribution in inhomogeneous samples. Such a sporadic feature prevents any
quantitative treatment.

The first observations of RTN began in the fifties in reversed-biased p-n junc-
tions [84]. Lately, with the achievement of new structures with reduced lateral
sizes, resistance switching was discovered in various conductors and devices like
MOSFET, Metal-Insulator-Metal junctions, small semiconductors and metallic
samples.

(a) (b) (c)

Fig. 11.8. (a) Magnetoresistance minor loop (full line) and main loop (dashed line)
at 80 K, in a bandwidth of 0.1 Hz for an ultra small Ni/NiO/Co junction. (b), (c)
Fluctuation at fields indicated by the arrows, measured in a bandwidth 0.1-12 Hz [37].
The authors conclude that the MR curve corresponds to a two level system defined by
the magnetisation state of the electronic trapping site in the NiO layer.

Outstanding noise measurements in metallic nanobridges close to the ballistic
regime (volume less than 8000 nm3) have shown Random Telegraph switching
at low temperature [86]. It is originating from a single mobile defect, switching
back and forth between two locations with different scattering cross-sections.
The effective cross-section is found to be of atomic dimension 0.01-0.1 nm2 and
the required activation energy ranges from 30 to 300 meV. In some specimens
and at some temperatures, multi-level resistance switching has been observed.
The superposition of two correlated switching processes reveals the existence of
two distinct defects with the configuration of one influencing the lifetime of the
other. Above 150 K, the noise becomes Gaussian with a 1/f spectrum.

RTN may also be the dominant low frequency noise in magnetic and non-
magnetic tunnel junctions. As a general rule, only tunnel junctions with a small
active area (less than a few µm2) exhibit RTN, whereas otherwise a 1/f PSD is
expected. The microscopic origin is related to trapping and de-trapping of elec-
trons in defects located in the insulating layer. The Coulomb field induced by a
charged trap strongly affects the energy barrier. Resistance fluctuations as high
as 50% can be reached [37,87]. In the case of all-magnetic junctions, like elec-
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trodeposited [Ni/NiO/Co] nanowires with cross-sections less than 0.01 µm2 [37],
the MR signal is dominated by resistance steps which correspond to two level
fluctuations, see Fig. 11.8. The relevant parameter of the resistance fluctuations
is the magnetisation state of the electronic trap in the oxide. The trapping prob-
ability is magnetic field dependent: under a given field, when the local magnetic
state of the insulating magnetic oxide differs from the electrode magnetisation,
the trapping site acts like a spin blockage. Fluctuations of the defects’ magneti-
sation induce RTN in GMR curves which may occur well above the electrode
saturation fields.

Fig. 11.9. Voltage fluctuations in a discontinuous Ni82Fe18/Ag multilayer under an
applied magnetic field of 6.24 mT [16]. The two curves reveal a discrete increase in the
switching amplitude with a step of temperature from 110 K to 111 K. It is interpreted in
terms of a change in the coupling strength between the fluctator to the charge carriers.
One may involve a temperature induced growth of the fluctuating domain.

In tiny magnetic structures and in magnetic conductor devices like GMR
metallic multilayers, RTN has also been reported as a predominant source of
noise in the low frequency range. It is attributed to magnetic domain fluctua-
tions [7,16,31,32,33]. A crossover from 1/f noise to RTN occurs when the size
of the sample becomes comparable to the magnetic domain size. A statistical
analysis of the RTN gives rise to an estimate of the magnetic domain volumes,
their energy scale and the eventual domain-domain interaction. In a discon-
tinuous GMR permalloy-silver multilayer with a lateral size reduced to a few
µm, Kirschenbaum et al. [16] have presented first data of RTN with resistance
switches around 1.2% due to thermally activated fluctuations of magnetic do-
mains, see Fig. 11.9. From the analysis of the field dependence of the lifetimes
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of the “up” and “down” resistance states, they have inferred a magnetic vol-
ume of the switching entity equal to 106µB . Based on a rough estimate of the
permalloy grain size in the “pancake” structure of the multilayer, the authors
have concluded that the discrete resistance jumps involve correlated switching of
a multi-grain complex. This is of great importance for the understanding of the
GMR magnitude. The activation energies of the “up” and “down” states, de-
duced from the temperature dependence of the RTN are of the order of 80 meV
and 400 meV, respectively. The large energy difference refers to a strongly asym-
metrical two energy well model. Local magnetic interactions may tend to favour
one state in detriment to the other.

Finally, let us mention that telegraph noise spectroscopy also probes the mag-
netisation reversal of extremely small magnetic clusters. From the RTN study,
Coppinger et al. investigated the single domain switching of nanometric ErAs
clusters in a matrix of GaAs [7].

Fig. 11.10. Temperature dependence of the average time in the low state of two level
fluctuations of nanometric ErAs antiferromagnetic clusters in various magnetic fields
[7]. The saturation of the average dwell time is due to tunnelling of the magnetisation
at very low temperature. At 1.56 T, the ground states of each well are aligned and
the tunnelling process is temperature independent. Under a higher field, one state is
favoured which leads to a thermally activated tunnelling regime.

The antiferromagnetic nature of the isolated ErAs cluster impedes a direct
measurement of its magnetisation reversal. An angular study of the influence
of the applied magnetic field on the resistance switching rates demonstrates the
sixfold magnetic anisotropy of the ErAs nanometric clusters. From the temper-
ature dependence of the lifetimes spent in both resistance states, the authors
observed a strong deviation from the expected lifetime values in case of ther-
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mally activated processes below 300 mK, see Fig. 11.10. They interpreted their
result as the manifestation of a macroscopic tunnelling reversal of the EuAs
cluster magnetisation at very low temperatures.

It is worth mentioning that much care has to be taken to estimate the mag-
netic volume of the switching entity from the field dependence of the occupancy
probabilities. For a thermally activated process, the general expression of the
relaxation times is:

τi(H,E, T ) = τ0,i exp [Ei(H,E, T )/kBT ] , (11.30)

where Ei(H,E, T ) is the energy barrier for the ith state which, in general, may
depend on a magnetic and electrical field, and on the temperature. In the low
magnetic field limit, we assume that the angular positions of the magnetic mo-
ments in each state are fixed. Therefore, the field effect on the energy barri-
ers can be linearised and thus corresponds to the Zeeman energy. The Zeeman
shift affects both the two stable states and the virtual state associated with the
top of the barrier. The field dependence of the energy barrier is therefore [7]:
Ei(H) = Ei(H = 0) + ∆mi · H, where ∆mi = mi − mv. mi and mv are
the magnetisation vectors for the ith state and the virtual state. The applied
magnetic field probes the projection of the magnetic moment difference ∆mi

onto its axis. From the statistical lifetime analysis, the ∆mi value along H is
inferred. This value can be orders of magnitude smaller than the magnetic mo-
ment of the ith state. Such a situation occurs, for example, in case of fluctuations
of the magnetisation between canted states. The estimate of the real magnetic
volume requires either a strong assumption concerning the easy magnetisation
axis within the magnetic entity or an accurate angular dependence study of the
lifetimes versus the orientation of the magnetic field.

11.4 Electronic Noise Studies in Materials
for Spin Electronic Applications

The achievement of electronic devices which are sensitive both to the charge
of the carriers and their spin-quantum number initiates a revolution in future
applications [9,10,11]. A new degree of freedom in the concept of electronics
can be reached once the orientation, the transport and the lifetime of the spin
magnetic moment of charge carriers are fully controlled by semiconductor tech-
nology. We may distinguish two kinds of magneto-electronic devices. The first
one is directly issued by the discovery of GMR based on specific electron spin
orientations across ferromagnetic layers [89]. The GMR effects and related phe-
nomena like TMR are already exploited in the high technology market with a
huge economic potential. GMR sensors in high density magnetic read-heads or
non-volatile magnetic random access memory (MRAM) [15] are typical exam-
ples. In principle, the ultimate improvement of these devices rests in the use
of ferromagnets with the strongest spin electronic density asymmetry at the
Fermi level [89]. That is why, half metallic oxides [13] and half metallic ferro-
magnets like the Heusler compounds [90,91,92] which theoretically exhibit 100%
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spin polarisation are currently investigated in the light of potential applications.
Right now, GMR based sensors use spin effects in metals, even though encour-
aging results have been obtained in other materials like all-oxide trilayers [93].
A fascinating improvement would be the implementation of the GMR effect
in semiconductor technology, within conventional electronics. The magnetoelec-
tronic devices based on spin-polarised transport correspond to the second type of
spin electronic applications. New magnetic devices like spin transistors or spin-
memory cells are at the earliest stage of development [94,95]. They are based
on spin injection from a ferromagnet into a non-magnetic semiconductor. Spin
injection is actually an extremely delicate task since spin dependent processes
at the interface are thought to have a severe effect on the spin polarisation of
the injected charges. Current work is devoted to spin injection and detection in
all-semiconductor devices [96,97]. Results are promising although restricted for
the moment to the low temperature range.

The development of spin electronics requires investigations on materials with
unique properties like 100% spin polarisation or a high spin coherence length.
The second step consists in the implementation of these materials in convenient
devices adapted to the existing technology. In each case, electrical noise exper-
iments provide an efficient tool for characterising the material and its eventual
application. In the first stages of the development, noise studies in the mate-
rial define its intrinsic noise level and in most cases, give rise to microscopic
information which contribute to a better understanding of its electrical and
magnetic properties. Recent noise studies have been performed on half metallic
oxides [39] (Sect. 11.4.1) and CMR perovskites [8,39,40,41,42,43,44,45,46,47,48]
(Sect. 11.4.2), both being potentially interesting for magnetic sensors. An in-
triguing high noise level in the low frequency range has been measured in these
materials and the search of the physical origins permitted an insight into their
electrical and magnetic ground states. The significance of this noise level as a
limiting factor for low frequency applications might be assessed on the basis of
these data.

The implementation of a device in an appropriate design also requires noise
experiments to optimise the signal to noise ratio of the sensor in its final state.
For example, the change from AMR to GMR high density magnetic read-heads
is now well-advanced in several companies (Sect. 11.4.3). However, the earliest
noise experiments on GMR multilayers showed electrical noise levels much higher
than what is currently observed in commercial AMR based sensors [98]. Much
work is therefore nowadays devoted to the optimisation of magnetic fluctuations
in GMR devices.

11.4.1 Low Frequency Noise in Half-Metallic Oxides

A large 1/f noise, at least five or six orders of magnitude greater than normally
found in metals has been measured in CrO2, Fe3O4 and La2/3Sr1/3MnO3 [39],
which are currently under investigation because of their high spin polarisation.
However, such low frequency noise is not at all unusual in oxides; a comparable
noise magnitude has previously been observed in cuprates in the normal state
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[99,100]. Nevertheless, it is of major interest whether the electrical noise prop-
erties in half metallic oxides are related in any manner to the half-metallicity of
their electronic band structure.

In CrO2 thin films [39], at room temperature, Hooge’s constant is around
2000 and the magnetic field has little effect on the excess noise compared to
its total magnitude. The temperature dependence of Sν(f) reveals a significant
increase of the noise above 200 K. The physical origin of the noise has been
investigated in the framework of the Dutta–Dimon–Horn model. The form of
the energy distribution of the excitation responsible for the 1/f noise exhibits
two-well defined maxima, a first one around 0.4 eV and a larger one above 0.8 eV,
see Fig. 11.11a.

The large activation energy is consistent with the activation energy of 0.93 eV
for oxygen diffusion. Local oxygen motion and also oxygen deficiency create
thermally activated vacancies and defects. These may act either as dynamic traps
of free carriers and induce carrier fluctuations, or they may jump between atomic
sites that are not equivalent in their contribution to the electrical resistivity.
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Fig. 11.11. (a) Energy distribution of the fluctuators responsible for the 1/f resistance
fluctuations within the experimental frequency window in CrO2 thin film [39]. In the
inset the schematic electronic band structure of CrO2 is shown with the activation en-
ergies E1, for d → d excitations and E2 for p → d excitations. (b) Structure dependence
of the noise in CrO2 films for a low and high grain boundary density along the current
path.



260 B. Raquet

Such effects are usually more pronounced near grain boundaries which are
one of the most probable places in a polycrystalline sample to find mobile atoms.
The extrinsic noise sources have been studied in CrO2 thin films with a needle-
like structure with grains of approximately 30 µm length and 0.5-2 µm width.
A significant decrease by a factor of 4 of the 1/f noise has been found at room
temperature, when the current is applied along the path with the lowest density
of grain boundaries, see Fig. 11.11b.

An intrinsic origin of the noise has also been put forward in relation to the
half metallic character of CrO2. The fluctuations providing the noise may be of
electronic rather than structural origin. The band structure of CrO2 is shown
schematically in the inset of Fig. 11.11a. The activation energy for creation of
down-spin carriers in the t2g band is E1, for d → d excitations and E2 for p → d
excitations. Any reversed spin in the conduction band has a severe effect on the
conductivity because it will be associated with a reversed Cr4+ site moment,
which not only withdraws that ion from the conduction process, but also re-
duces the bandwidth of the local density of states of neighbouring sites [101].
In this model, E1 and E2 are associated with the peaks at 0.4 and ≥ 0.8 eV.
No significant effect of an applied magnetic field is expected because the energy
shift of the spin polarised bands (0.67 K/T) is much less than their separation
(≥ 1000 K). Further work is needed to study the 1/f noise in epitaxial CrO2
films and determine the extent to which structural and electronic excitations
contribute to the noise. It should be noted that electronic transitions with spin
reversal in the electronic band structure have also been regarded as a possible
intrinsic source of noise in La2/3Sr1/3MnO3 [39].

Concerning the Heusler compounds, various attempts have been made to use
Heusler electrodes in TMR junctions, the goal being to inject highly spin po-
larised electrons through the junction. The TMR signal, at room temperature is
around a few %, which is actually much weaker than the expected value for half
metallic ferromagnet-insulator-ferromagnet junctions [90]. Spin scattering pro-
cesses at the interface originating from the Heusler layer degradation (roughness
and stochiometry) are thought to be the limiting factor. To our knowledge, no
noise measurements have been performed on those systems.

11.4.2 Electrical Noise in CMR Perovkites

Mixed-valence magnetic perovskites are under intense study since the rediscovery
of the colossal magnetoresistance in certain members of this group of materials.
CMR near TC driven by the double exchange mechanism and the dynamic Jahn-
Teller distortion [12] as well as the low field MR due to grain-boundary effects
[102] provide a fertile ground for application as magnetic sensors [103].

In mixed-valence perovskite manganite, where the hopping conductivity is
strongly dependent on the oxygen stoichiometry and the tolerance factor, the
influence of oxygen dynamics as an extrinsic 1/f source of noise cannot be ne-
glected, especially in the high temperature range [39]. Much more relevant are
the temperature dependences of the 1/f resistance fluctuations observed in CMR
manganite thin films in the ferromagnetic regime. In calcium and strontium
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doped manganites, a 3 or 4 order of magnitude increase of the noise level occurs
as the metal-insulator transition is approached [8,39,40,41,42,43,44,45,46,47,48].
The noise peak temperature is slightly lower than that of the resistivity peak.
By applying a magnetic field, a large reduction of the noise is observed in high
field, comparable to the magnetoresistance. Therefore, the 1/f fluctuations are
mostly of magnetic origin. The effect has been attributed to magnetic domain
fluctuations near the transition in a time scale consistent with low frequency
noise [48], or spin fluctuations coupled to the resistivity by electron-magnon
scattering according to the double exchange theory [39].

In low-TC manganite thin films, several studies also reveal a huge 1/f noise
which peaks well below TC [8,40,41,42,43,46,47,48] with, in some case, non-
Gaussian resistance fluctuations [8,40,41,46]. Let us distinguish two classes of
low-TC maganites, one which undergoes a first order metal-insulator transition
and another one with a non-hysteretic phase transition as a function of temper-
ature.

In the latter case, very recent work reports an astonishing random telegraph
noise1 in the resistance of La2/3Ca1/3MnO3 in the ferromagnetic regime [8,41].
Well below TC (TC ∼ 210 K), between 4 K and 170 K, Raquet et al. [8] observed
alternatively large non-Gaussian noise and giant RTN with resistance steps vary-
ing from 0.01% to 0.2% which is surprisingly high for an almost macroscopic
sample (see Fig. 11.12a). From a statistical analysis of the lifetimes of the low
and high resistance states versus the temperature and applied magnetic field, the
authors have inferred, in the low temperature regime (below 30 K), a constant
energy difference between the two states, around 100 K, with a magnetic volume
of the switching entity of the order of 105 Mn atoms. It is worth mentioning that
the resistance steps have been observed for applied fields above the saturation
field. The large RTN magnitude and its persistence in high fields rule out mag-
netic domain instabilities as noise sources of the non-Gaussian fluctuations and
the RTN. At higher temperatures, an atypical temperature dependence of the
occupancy lifetimes has been observed. An increase of the temperature over few
hundred of mK drastically reduces the occupancy probability of the low resis-
tive state in favour of the high resistive one, see Fig. 11.12b. The dynamics of
RTN demonstrate that the energy barrier difference for the two states is strongly
temperature dependent. The authors put forward a model of the energy configu-
ration which reveals a strong analogy with the free energy functional defined for
first order transitions in the framework of the Landau-Ginzburg treatment, see
the inset to Fig. 11.12b, lower panel. They concluded that the large magnitude
of the RTN, its temperature and magnetic field dependence give evidence for
a dynamic coexistence of two phases below TC : a ferromagnetic metallic phase
and a phase with relatively depressed magnetic and electrical properties. The
RTN occurs when a cluster, the fluctuator, switches back and forth between the
two phases. Consequently, the noise measurements provide a direct proof of con-
1 Large resistance steps have also been observed in La2/3Sr1/3MnO3 thin layers and
La2/3Sr1/3MnO3/SrTiO3/La2/3Sr1/3MnO3 tunnelling junctions by M. Viret et al.
(unpublished).
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duction in La2/3Ca1/3MnO3 dominated by a mixed-phase percolation process
below TC . In this picture, the location of the noise-level peak well below TC and
its surprising amplitude are a direct consequence of the mixed-phase: near the
percolation threshold for the metallic state, the conduction is dominated by the
narrowest current paths. Few switching clusters located in these critical bonds
have dramatic effects on the overall connectivity of the metallic network, which
results in a large increase of the noise level.
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Fig. 11.12. (a) Resistance of a La2/3Ca1/3MnO3 thin film versus time at different
temperatures. The noise alternates from a strongly non-Gaussian fluctuation-type to
RTN with ∆R/R ranging from 0.01% to 0.2% [8]. There is no evidence for RTN above
180 K (TC ∼ 210 K). (b) Top panel: temperature dependence of the average life-times
for a fluctuator activated around 109 K. Note that by increasing the temperature the
high-resistance state is stabilised and the low-resistance state becomes less probable.
The lines are a guide to the eye. Bottom panel: temperature dependence of the deduced
activation energies for both states. Inset: free energy functional F (σ, T ) = a(T −T0)σ2+
bσ3 + cσ4 of the two level system versus a configuration parameter σ at different
temperatures (σ = 0 corresponding to the high-resistance state). a, b, c and T0 are
fitting parameters chosen to describe simultaneously the temperature dependence of
the activation energies Eup and Edown (solid and dashed lines in panel (b)).

Simultaneously, very similar results have been obtained by the Weissman
group [41] on La2/3Ca1/3MnO3 thin films and single crystals. They reached
the same conclusion of a dramatic current inhomogeneity in the ferromagnetic
regime, but with substantial differences in the energy analysis. A temperature
independent energy difference between the two states with an enhancement of
their entropy difference versus temperature was pointed out. They also deduced a
large difference in the magnetic moment between the two states equivalent to 104-
106 unit cells. The high resistive state is thought to have a zero magnetic moment.



11 Electronic Noise in Magnetic Materials and Devices 263

Fig. 11.13. The temperature dependence of the resistivity and the normalised spectral
density at 10 Hz of the 1/f noise in a polycrystalline sample of La5/8−xPrxCa3/8MnO3

(x ∼ 0.35) [42]. Note that the noise peaks below the resistivity maximum, typical
of a percolating two phase process. The inset shows the scaling dependence of the
normalised magnitude of the 1/f noise versus the resistivity in an interval 61 K-73 K
(TC ∼ 73 K). The solid line is a power fit: α/n ∝ ρ2.9.

Finally, these noise studies provide an insight into one of the most actively
debated questions related to the spatial homogeneity of the ferromagnetic ground
state in the manganites [104,105,106]. The last reports on noise experiments put
forward a dynamic phase separation in La2/3Ca1/3MnO3, while the intrinsic
nature of the segregation (electronic or chemical inhomogeneity) is still under
study.

In charge-ordered manganites, electrical noise measurements also exhibit a
huge 1/f noise in the hysteretic region, between the ferromagnetic-metallic and
the insulating-charge ordered phases [40,42]. Podzorov et al. [42] have observed
an unprecedented magnitude of 1/f noise near TC in La5/8−xPrxCa3/8MnO3
(x ∼ 0.35), see Fig. 11.13. They have shown that the power spectrum of the
resistance fluctuations near the transition scales with the resistivity as follows:
Sν(f)/V 2 ∝ ρκ/t.

The critical exponents κ and t obtained are fully consistent with theoretical
noise predictions for a percolation metal-insulator transition [1,107,108]. It has
to be mentioned that the existing theoretical approaches on noise behaviour in
percolating systems refer to nanocomposite materials containing two physical
phases, a metallic one and an insulating one. Podzorov’s results clearly demon-
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strate the percolating nature of the CO-FM transition in polycrystalline samples
of low-TC manganites.

However, the authors do not report on non-Gaussian resistance fluctuations
in the vicinity of the percolation transition, which are normally expected
for current-redistribution processes within an inhomogeneous sample. Gi-
ant non-Gaussian noise has actually been observed by A. Anane et al. in
Pr2/3Ca1/3MnO3, in the mixed region around TC [40]. The non-Gaussian
behaviour has been discussed in terms of percolation behaviour of the conduc-
tivity. The dominant fluctuators are thought to be manganese clusters switching
between the M-F and I-CO phases. Finally it is worth mentioning that, contrary
to RTN in La2/3Ca1/3MnO3, the non-Gaussian noise related to a percolation
picture is not surprising in charge ordered systems as it undergoes a strongly
hysteretic first order metal-insulator transition due to the formation of the CO
state [109].

We conclude that noise measurements in magnetic oxides like CMR per-
ovskites go further than a simple estimate of the magnitude of the noise level.
Fundamental properties of the ferromagnetic ground state and the related en-
ergy scales have been inferred. That contributes, with other experiments, to the
understanding of the electrical and magnetic properties of the CMR perovskites.
In terms of applications, RTN is obviously unacceptable for low frequency sen-
sors. Even in high frequency applications, the resistance steps induce high fre-
quency components in the frequency spectrum of the desired signal. More work
is needed to estimate the resistance fluctuation contributions to the minimum
field detectable by a CMR perovskite prototype sensor.

11.4.3 Electrical Noise in GMR based sensors

In the following, we shall distinguish the electrical noise (mainly the 1/f noise)
in GMR elements and in GMR sensors such as high density magnetic read-heads.
Both originate from magnetic instabilities but the particular environment of the
particular junction in the sensor design requires special comment.

The indisputable proof of the direct relationship between the electrical noise
in GMR multilayers and magnetic fluctuations has been carried out by Hard-
ner et al. [98,110]. Their experiment consisted in establishing the validity of the
fluctuation-dissipation theorem, assuming that the dominant noise sources in
[Co/Cu]n multilayers are magnetic instabilities. In the framework of the F-D
theorem, it has been demonstrated that the power spectral density of the mag-
netic fluctuations is related to the imaginary part of the magnetic susceptibility
(the magnetic loss) by the following expression:

SM (f) = (2/π)χ′′(f)kBT/Ω , (11.31)

where χ′′(f) is the out-of-phase magnetic susceptibility, kBT the thermal energy
and Ω, the sample volume. The authors proposed a new expression for the F-D
theorem related to resistance fluctuations. The PSD of the magnetisation SM (f)
is coupled to the PSD of the resistance SR(f) through the GMR effect and the



11 Electronic Noise in Magnetic Materials and Devices 265

Fig. 11.14. Transverse magnetic field dependence of (a) resistance and (b) the voltage
spectral density at 1 Hz for a GMR-based magnetoresistive element [36]. The data
given in (b) are taken with increasing the applied field Ht, as indicated by the arrow.

authors have estimated χ′′(f) from the experimental determination of the out-
of-phase component of the resistivity for an ac applied magnetic field. They
finally demonstrated that the noise level calculated from the F-D theorem is in
perfect agreement with the measurement of Hooge’s constant for various applied
magnetic fields.

Besides, several studies [34,36,38,98,111] have shown that the maximum elec-
trical 1/f noise level is reached for an applied magnetic field corresponding to
the maximum sensitivity ∂R/∂Hof the GMR effect, see Fig. 11.14. This means
that the GMR multilayers are noisiest when the magnetic domains and/or the
magnetisation orientation within a domain are in the least stable state, around
the coercive field.

Van de Veerdonk et al. [36] developed a model which correlates the 1/f noise
level to the magnetic instability within an AMR layer and a GMR multilayer.
For an applied magnetic field, they calculated the magnetisation orientation in
the free layer within the framework of a coherent rotation described by the well
known Stoner-Wohlfarth model. Using Boltzmann statistics, they furthermore
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estimated the angular distribution of the magnetisation vector due to thermal
activation. Finally, the angular distribution was coupled to the resistance fluctu-
ations through the AMR and the GMR effects. The results illustrate the direct
correlation between the calculated magnetisation instabilities within a single
domain and the experimental electrical 1/f noise in the MR signal.

As a consequence, the noise level in a GMR multilayer drastically depends on
its magnetic state. In a saturated state, the noise level is comparable to the one
measured in non-magnetic granular materials. In a demagnetised state, or near
Hc, with no bias field ensuring a monodomain configuration, Hooge’s constant is
around 1-20. For patterned GMR multilayers in a picture frame with a bias field
to guarantee a single domain spin-valve, γH is much smaller, around 2 × 10−1,
in the regime where ∂R/∂H is maximum.

From a practical point of view, it is of interest to get a rough estimate
of the minimum detectable magnetic field ∆Hmin of a GMR device when the
dominant sources of noise are supposed to be 1/f magnetic fluctuations Sν(f)
at low frequencies and thermal noise 4kBTR at higher frequencies. The voltage
fluctuations measured at the MR probes are simply expressed by:

[
δV

V

]2


[
δR

R

]2


∫

∆f

[
4kBTR

V 2 +
Sν(f)
V 2

]
df . (11.32)

With δR 
 (∂R/∂H)∆H, we deduce:
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V 2

]
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Here ∆f is the experimental frequency bandwidth and ∆Hmincorresponds to the
minimal field above which the sensor detects a change in the external magnetic
field. We note that the first term is linear in ∆f , whereas, the 1/f noise contri-
bution has a logarithmic frequency bandwidth dependence. Besides, ∆Hmin is
inversely proportional to the MR sensitivity, which corresponds to the pre-factor
of the above equation. At low frequencies, up to 10 kHz-1 MHz, the minimum
detectable field is defined by the 1/f noise level.

In a commercial AMR sensor, ∆Hmin 
 0.2 mOe for a frequency cutoff
of the 1/f noise around 100 kHz. For a [Co/Cu]n GMR multilayer, with an
intrinsic complex multi-domain structure, ∆Hmin 
 1 − 5 mOe. In the case of
a polycrystalline La2/3Ca1/3MnO3 thin film, at room temperature and with a
small bias field, CMR and noise measurements lead to ∆Hmin 
 1 Oe. Therefore,
the gain in the magnetoresistance sensitivity may not induce an enhancement of
the sensor sensitivity, if intrinsically noisier materials are used.

The significant difference in the noise level between AMR and GMR ele-
ments is thought to originate from the stronger magnetic sensitivity and hence,
a stronger coupling between magnetic instabilities and the resistivity [36], a dif-
ficult control of the domain structure in a GMR process [34,111] and the use of
thinner magnetic layers in GMR multilayers [36].

For sensors in a final design like GMR high density read-heads, much less
relevant results have been published. We summarise the following points:
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The dominant noise is still a low frequency 1/f noise originating from mag-
netic fluctuations. It is thought that, for 100 MHz-200 MHz applications (which
is roughly the case for read-heads), this noise should not be a crucial problem
[35].

The signal to noise ratio scales with the square root of the active sensor area.
If L is the strip length and W the strip width, then [35]:

S

N
=

√
WL

∆H
R

∂R
∂H

Lc
dRc
Rc

(11.34)

This is easily verified if the sensor area is divided into small elements, each having
statistically independent resistance fluctuations dRc and an associated coupling
length Lc.

The 1/f noise level is mainly dependent on the probing current [31,32], the
bias current (used to polarise the device in a constant field) [32,33] and the effec-
tive magnetic anisotropy of the free layer [112]. Xiao et al. [31] have shown that,
in GMR recording heads, the square current dependence of the noise level, as pre-
dicted by Hooge’s expression, is no longer observable: extra low frequency noise
of purely magnetic origin appears. Under a high current density (107 A/cm2),
some heating effects probably activate new magnetic sources, i.e. new magnetic
domains or orientation fluctuations.

Wallash [33] and Hardner et al. [32] provide clear evidence that much care
has to be taken in the choice of the bias current; in some cases, the induced field
may activate new fluctuators, giving rise to random telegraph noise. The RTN
usually dominates the low frequency noise in small active areas, or after a strong
electrical stress [31], see Fig. 11.15, and/or under particular bias fields [32,33].
The location of the magnetic instability can be inferred combining the effects
of temperature, bias current and external magnetic field on the lifetime of the
resistance switches [32].

We know that an accurate estimate of the magnetic size of the fluctuators
based on the RTN analysis is rather delicate (see Sect. 11.3.4). For RTN in
GMR sensors, the practical question is to know whether it arises from a large
magnetic rotation within a small volume, or from a small angular instability in
a much larger area. Xiao et al. have provided a simple argument based on the
∆R/R resistance switching magnitude [31]. It is well known that the MR signal
is roughly proportional to M2 ∝ cos2(θ/2), where θ is the angle between the
magnetisation vectors of the pinned layer and of the free layer. If one assumes
that half of the sensor is affected by the magnetic instability (the exchange
length is around 0.5 µm), then 5× 10−5 resistance steps are due to a magnetic
instability with a 0.3◦ angular distribution into a magnetic domain of half a
micron length. However, the resistance jumps persist under applied fields which
rotate the free layer up to 30◦. It is questionable that 0.3◦ fluctuations are still
active over such a large free layer rotation. Therefore, Xiao et al. concluded that
the RTN in GMR sensors probably originates from a large angle rotation in a
small area due to a local non-uniformity of the anisotropy.
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(a)

(b)

Fig. 11.15. Random telegraph noise of a GMR head after electrical stressing [31]. (a)
Noise spectrum with the extracted 1/f2 dependence. (b) Time trace and its dependence
on an external applied magnetic field.

Several authors [31,32,33] agree in the conclusion that 1/f noise is not a
limiting factor for high frequency applications. However, it is thought that low
frequency RTN may cause significant problems for head operation. Its sharp
switching induces high frequency components in the data channel’s passband
and it is responsible for multiple metastable states in the sensor which leads to
a popping baseline in the MR signal.

11.5 Concluding Remarks

We have shown that electrical noise studies in condensed matter are now an ef-
fective tool to probe dynamic microscopic processes coupled to the charge carri-
ers. Resistance fluctuations may be fingerprints of defect generation and motion
between equivalent atomic sites, electronic surface traps interacting with the
conduction channel, current redistribution in inhomogeneous materials, slow ex-
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change of electrons between the infinite cluster and small isolated donor clusters,
charge carriers crossing an energy barrier, magnetic domain fluctuations, mag-
netisation instabilities within a magnetic cluster. All these microscopic events
are of fundamental interest in the understanding of the electronic and magnetic
ground states of the material.

In magnetic materials, we have stressed by various examples, the strong cou-
pling between magnetic instabilities and electronic transport via spin dependent
scattering processes. Depending on the balance between the sample size, the vol-
ume of the fluctuating magnetic cluster and the strength of the coupling, the re-
sistance fluctuations range from 1/f Gaussian fluctuations to random telegraph
noise between two distinct resistive states. Statistical analysis in frequency and
time space provide an insight into the fluctuation regime (thermally activated
or tunnel events), the energies and the volumes of the fluctuations. The noise
results are also interpreted in terms of noise level above the thermal noise. They
provide an estimate of the signal to noise ratio for materials and devices with a
view on applications.

Finally, with the development of sub-micron magnetic structures, electronic
noise measurement is a promising transport experiment to probe singular events
on a nanometer scale. It is an unique tool able to identify the dynamics of the
nanometric magnetic inhomogeneities. Future experiments which combine, for
example, both electronic noise measurements and magnetic imaging may provide
an ultimate insight into spin dependent scattering processes coupled to magnetic
instabilities.
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65. F. K. du Prè, Phys. Rev. 78, 615 (1950).
66. A. L. McWhorter, in “Semiconductor Surface Physics”, R. H. Kingston (ed.),

University of Pennsylvania Press, Philadelphia, p.207 (1957).
67. P. Dutta, P. Dimon, and P.M. Horn, Phys. Rev. Lett. 43, 646 (1979).
68. J. H. Scofield, J. V. Mantese, and W. W. Webb, Phys. Rev. B 34, 723 (1986).
69. J. Pelz and J. Clarke, Phys. Rev. Lett. 55, 738 (1985).
70. D. M. Fleetwood, T. Postel, and N. Giordano, J. Appl. Phys. 56, 3256 (1984).
71. J. H. Scofield, D. H. Darling, and W. W. Webb, Proc. 6th Int. Conf. on Noise in

Physical Systems, Gaithersburg, MD, USA, 147 (1981).
72. P. H. Handel, Phys. Rev. Lett. 34, 1492 (1975); 34, 1495 (1975); Phys. Lett. 53A,

438 (1975).
73. P. de Los Rios and Y. C. Zhang, Phys. Rev. Lett. 82, 472 (1999).
74. P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987); Phys. Rev.

A 38, 364 (1988).



272 B. Raquet

75. W. Reim, R. H. Koch, A. P. Malozemoff, M. B. Ketchen, and H. Maletta, Phys.
Rev. Lett. 57, 905 (1986).

76. M. B. Weissman, Rev. Mod. Phys. 65, 829 (1993).
77. H. B. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).
78. N. E. Israeloff, M. B. Weissman, G. A. Garfunkel, D. J. Van Harlingen, J. H.

Scofield, and A.J. Lucero, Phys. Rev. Lett. 60, 152 (1988).
79. M. B. Weissman and N. E. Israeloff, J. Appl. Phys. 67, 4884 (1990).
80. N. Giordano, Phys. Rev. B 53, 14937 (1996).
81. P. J. Restle, R. J. Hamilton, M. B. Weissman, and M. S. Love, Phys. Rev. B 31,

2254 (1985).
82. C. Parman, N. E. Israeloff, and J. Kakalios, Phys. Rev. B 44, 8391 (1991).
83. B. Raquet, B. Aronzon, V. V. Rylkov, E. Z. Meilikhov, N. Negre, M. Goiran, and

J. Leotin, unpublished.
84. M. J. Kirton and M. J. Uren, Adv. Phys. 38, 367 (1989).
85. L. M. Lust and J. Kakalios, Phys. Rev. Lett. 75, 2192 (1995).
86. K. S. Ralls and R. A. Buhrman, Phys. Rev. Lett. 60, 2434 (1988).
87. K. R. Farmer, C. T. Rogers, and R.A. Buhrman, Phys. Rev. Lett. 58, 2255 (1987).
88. M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen van Dau, F. Petroff, P. Etienne,

G. Creuset, A. Friedrich, and J. Chazeles, Phys. Rev. Lett. 61, 2472 (1988).
89. A. M. Bratkovsky, JETP, 65, 452 (1997); Phys. Rev. B 56, 2344 (1997).
90. C. T. Tanaka, J. Nowak, and J. S. Moodera, J. Appl. Phys. 81, 5515 (1997).
91. C. T. Tanaka and J. S. Moodera, J. Appl. Phys. 79, 6265 (1996).
92. J. S. Moodera and D. M. Mootoo, J. Appl. Phys. 76, 6101 (1994).
93. M. Viret, M. Drouet, J. Nassar, J. P. Contour, C. Fermon, and A. Fert, Europhys.

Lett. 39, 545 (1997).
94. S. Gardelis, C. G. Smith, C. H. W. Barnes, E. H. Linfield, and D. A. Ritchie,

Phys. Rev. B 60 ,7764 (1999).
95. P. R. Hammar, B. R. Bennett, M. J. Yang, and M. Johnson, Phys. Rev. Lett. 83,

203 (1999).
96. R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L.

W. Molenkamp, Nature 402, 787 (1999).
97. Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D. D.

Awschalom, Nature 402, 790 (1999).
98. H. T. Hardner, Thesis, University of Illinois (1996).
99. S. Scouten, Y. Xu, B. H. Moeckly, and R. A. Buhrman, Phys. Rev. B. 50, 16121

(1994).
100. L. Liu, K. Zhang, H. M. Jaeger, D. B. Buchholz, and R. P. H. Chang, Phys. Rev.

B 49, 3679 (1994).
101. A. Barry, J. M. D. Coey, L. Ranno, and K. Ounadjela, J. Appl. Phys. 83, 7166

(1998).
102. K. Steenbeck, T. Eick, K. Kirsch, H.-G. Schmidt, and E. Steinbeiß, Appl. Phys.

Lett. 73, 2506 (1998); N. K. Todd, N. D. Mathur, S. P. Isaac, J. E. Evetts, and
M. G. Blamire, J. Appl. Phys. 85 7263 (1999).

103. Y. Xu, V. Dworak, A. Drechsler, and U. Hartmann, Appl. Phys. Lett. 74, 2513
(1999).

104. E. L. Nagaev, Physics-Uspekhi 39, 781 (1996).
105. A. Moreo, S. Yunoki, and E. Dagotto, Science 283, 2034 (1999).
106. P. Schlottmann, Phys. Rev. B 59, 11484 (1999).
107. R. Rammal, C. Tannous, P. Breton, and A-M. S. Tremblay, Phys. Rev. Lett. 54,

1718 (1985).



11 Electronic Noise in Magnetic Materials and Devices 273

108. Z. Rubin, S. A. Sunshine, M. B. Heaney, I. Bloom, and I. Balberg, Phys. Rev. B
59, 12196 (1999).

109. A. Anane, Private Communication.
110. H. T. Hardner, M. B. Weissman, M. B. Salamon, and S. S. P. Parkin, Phys. Rev.

B 48, 16156 (1993).
111. H. T. Hardner, M. B. Weissman, B. Miller, R. Loloee, and S. S. P. Parkin, J.

Appl. Phys. 79, 7751 (1996).
112. J. X. Shen, C. Xie, J. Ding, A. Shultz, and S. H. Liao, IEEE Trans. Magn. 35,

2595 (1999).



12 Materials for Spin Electronics

J. M. D. Coey
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Abstract. Materials which are currently used in spin electronic devices, and mate-
rials which may be useful in future are discussed. These include iron- cobalt- and
nickel-based alloys for spin polarization and analysis, metallic and insulating antifer-
romagnets for exchange bias and oxides for tunnel barriers. The 3d alloys also serve
as detection or sensor layers. Permanent magnet materials play a role in biasing some
device structures. Novel materials are half-metallic oxides for all-oxide devices, and
magnetic semiconductors which may allow the integration of spin electronics and op-
toelectronics.

12.1 Introduction

This chapter presents magnetic materials of interest for spin electronic devices.
The focus is on crystal structure and intrinsic magnetic properties of the bulk
materials, although it must be remembered that when incorporated into devices
these materials frequently form part of a thin film stack with a layer thickness
< 10 nm. The structure and magnetic properties of thin films can differ signif-
icantly from those of the bulk. To cite just two examples, the atomic magnetic
moments in a free surface layer of a ferromagnetic film may be enhanced be-
cause of band narrowing, and surface anisotropy is present which is typically
� 0.1 mJ m−2 with the anisotropy direction normal to the film surface.

The properties that are exploited in spin electronic devices are of several
kinds, but they relate mainly to the hysteresis curve and magnetic-field-
dependent transport properties. Most semiconductors and semimetals are
nonmagnetic; they exhibit the normal Hall effect, and the classical B2 magne-
toresistance due to the Lorentz force −ev×B acting on the electrons. When the
mean free path is long, as in single-crystal films of bismuth [1], film dimensions
influence the magnetoresistive response. However, it is unnecessary to consider
the spin of the electrons to explain these magnetoelectronic effects; conventional
electronics has ignored the spin on the electron.

For ferromagnets, it is convenient to distinguish intrinsic magnetic proper-
ties, which are independent of microstructure or nanostructure in all but the
thinnest films, from extrinsic properties which derive from the microstructure
or nanostructure in an essential way. Besides the big three: Curie temperature
TC, spontaneous magnetization MS, and magnetocrystalline anisotropy K1, in-
trinsic properties include band structure, conductivity ratio α for ↑ and ↓ elec-
trons, magnetostriction λS, anisotropic magnetoresistance (AMR) and colossal
magneto-resistance (CMR). The main two extrinsic properties are remanence
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Mr, and coercivity Hc, but there is also induced anisotropy Ku, granular and
powder magnetoresistance (PMR), giant magnetoresistance (GMR), and tunnel-
ing magnetoresistance in planar tunnel junctions (TMR). GMR and TMR are
at the heart of spin electronics, as we know it at present.

The magnetic materials principally used in spin electronics are soft ferromag-
netic alloys of the late 3d metals. These serve as sources and conduction channels
for the spin-polarized electrons, as well as magnetic flux paths and shields. Most
progress has been made with sensors, ranging from simple position sensors and
elements for nondestructive testing of ferrous metals to sophisticated miniature
sensor elements in read heads for digital tape and disc recording where require-
ments are very demanding; high permeability is required with a sharp low-field
switching response that extends to frequencies in the GHz range. Magnetic mem-
ory and logic elements require square hysteresis loops. All AMR, GMR, TMR and
magnetic random access memory (MRAM) devices developed so far are based
on 3d ferromagnetic metals and alloys. So too are magnetic three-terminal de-
vices such as spin transistors and spin injection switches, as well as the magnetic
Schottky barriers for injecting spin-polarised hot electrons into semiconductors.

Antiferromagnets, which may be metals or insulators, find a use in exchange
biasing of magnetic thin film structures. Hard magnetic materials in thin film
form can be employed to generate a stray field to stabilize a particular domain
structure in a contiguous soft layer. Ferromagnetic oxides are at the research
stage, but it is hoped that in future their half-metallic character will be ex-
ploited in sources and analysers of completely spin-polarized electrons. Magnetic
semiconductors are another class of potentially-interesting materials, but they
suffer from the critical defect that their Curie temperatures are far below room
temperature.

Here, each of the main groups of actually or potentially useful materials
will be presented, and some alloys of interest for particular applications are
highlighted.

12.2 Iron Group Alloys

First we review the ferromagnetic elements Fe, Co and Ni, and then discuss alloy
systems based on these three elements. Each has a different crystal structure,
body-centred cubic (bcc) for iron, hexagonal close-packed (hcp) for cobalt and
face-centred cubic (fcc) for nickel. Their electronic densities of states are com-
pared in Fig. 12.1. All three transition elements have a broad, almost unpolarised
sp band superposed on a spin-split 3d band. The unsplit density of states D(E)
exhibits a peak at the Fermi level EF so that the Stoner criterion for sponta-
neous ferromagnetism D(EF)I > 1 is satisfied. The exchange interaction I in the
3d band is � 1 eV for all three ferromagnetic elements [2]. Iron, which has the
largest atomic moment of 2.22 Bohr magnetons (µB), is a weak ferromagnet in
the sense that there are both 3d ↑ and 3d ↓ electrons at the Fermi level. Cobalt
and nickel, which have smaller moments, are strong ferromagnets in the sense
that the 3d ↑ states lie entirely below the Fermi level. The electronic configu-
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ration of Ni, for example, is approximately 3d↑5.03d↓4.44s0.34p0.3, which gives a
spin-only moment of 0.62µB. Cobalt has an orbital moment of � 0.15µB and a
total moment of 1.73µB. The atomic moments quoted are at zero temperature.

Fig. 12.1. The spin-split densities of states D(E) calculated for iron, cobalt and nickel
at zero temperature.

Strong ferromagnets were expected to show a higher value of spin polarization
P of emitted electrons and a larger resistivity ratio α for ↑ and ↓ carriers than
weak ferromagnets because scattering of sp electrons into the filled 3d ↑ states is
suppressed. In fact P turns out to be almost the same in magnitude and, more
significantly of the same sign for all three ferromagnetic elements. P is easy to
define, but difficult to measure. The definition is simply (n↑−n↓)/(n↑+n↓) where
n↑,↓ is the number of conduction electrons of either spin in the unit cell, but in
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any experiment to measure n↑,↓ a weighting factor is involved which depends
on how the spin-polarized electrons are detected [3]. Methods for measuring P
include measuring the I : V characteristic after applying a field to a tunnel junc-
tion between the ferromagnet and a thin film of superconducting aluminium, or
measuring the I : V characteristic of a point contact between a superconducting
tip and the ferromagnet (Andreev reflection).

A summary of the main intrinsic properties of the ferromagnetic elements at
room temperature is given in Table 12.1 [4]. Values refer to room temperature,
except for the spin polarization, which was measured by Andreev reflection at
4.2 K [5].

Table 12.1. Intrinsic magnetic properties of Fe, Co and Ni.

structure lattice TC MS K1 λS α P

/density parameters (K) (MA m−1) (kJ m−3) (10−6) (%)
(kg m−3) (pm)

Fe bcc 287 1044 1.71 48 −7 1.6 45
7874

Co hcp 251 1388 1.45 530 −62 8.0 42
8836 407(fcc)

Ni fcc 352 628 0.49 −5 −34 44
8902

A number of derived properties important for aspects of nanoscale mag-
netism are listed in Table 12.2. These are the exchange stiffness A, the exchange
length lex =

√
A/µ0M2

S and the Bloch domain wall width δW =
√

A/K1.
The coherence radius lcoh =

√
24lex, the single-domain particle size dsd =

72
√
(AK1)/µ0M2

S and the superparamagnetic blocking diameter at room tem-
perature (150kBT/πK1)1/3 refer respectively to the reversal mechanism, domain
structure and stability of small particles. Analogous quantites can be defined for
thin films. Other significant length scales are the mean free paths λ for ↑ and ↓
electrons and spin-diffusion length λsd; the spin diffusion length is usually one
or two orders of magnitude greater than the mean free path, because spin-flip
scattering events are comparatively rare. The mean free path is relevant for in-
plane conduction in multilayer stacks, the usual GMR configuration. For cobalt,
λ↑ � 5.0 nm, λ↓ � 0.6 nm. The spin diffusion length is the appropriate scale for
perpendicular-to-plane conduction. λsd is about 50 nm for Co [6]. Some desirable
properties sought in soft ferromagnetic 3d alloys are a high magnetization and
high degree of spin polarization, low anisotropy and zero magnetostriction, since
a stress σ induces a uniaxial anisotropy Kstress = (3/2)λSσ. Often it is desirable
to create a weak uniaxial anisotropy Ku (� 1 kJ m−3) by processing a thin film
of a disordered alloy in an applied magnetic field, which creates some slight tex-
ture or pair ordering on an atomic scale. The weak induced anisotropy increases
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the permeability in the longitudinal direction, giving a square hysteresis loop
with little coercivity. In the transverse direction there is a straight anhysteretic
magnetization curve saturating at 2Ku/µ0MS (Fig. 12.2).

Table 12.2. Derived properties for Fe, Co and Ni.

A lex δB lcoh dsd dsp

(pJ m−1) (nm) (nm) (nm) (nm) (nm)
Fe 8.3 1.5 41 7.4 12 16
Co 10.3 2.0 14 9.7 64 7
Ni 3.4 3.4 82 16 31 34

(a) (b)

Fig. 12.2. Hysteresis loops for a soft magnetic material with weak induced uniaxial
anisotropy, measured (a) in the longitudinal direction and (b) in the transverse direc-
tion.

Resistivity is also an issue in devices which switch at high frequency. Use-
ful approaches are lamination of metallic and insulating films, or decorating
grain boundaries to make them resistive, thereby minimizing eddy current losses.
Amorphous alloys have the advantage of an intrinsically high resistivity, of order
1.5 µΩ m, which is the maximum possible for a homogeneous metal since the
mean free path can be no shorter than the interatomic separation. The magne-
tocrystalline anisotropy of isotropic amorphous alloys is zero. As with disordered
crystalline alloys, weak uniaxial anisotropy Ku can be induced by annealing or
depositing the material in a uniform magnetic field.

A famous summary of the magnetic moment per atom in binary 3d alloys is
the Slater–Pauling curve, shown in Fig. 12.3. The main branch, with slope −1
accounts for the strong ferromagnets having a filled 3d5↑ subband. Each electron
removed comes essentially from the 3d↓ subband and increases the spin moment
by 1µB. Extrapolating the curve to hypothetical strongly-ferromagnetic iron
gives a moment of 2.6µB. The branches with slope � 1 represent the moments
of alloys between early and late transition metals, where the 3d states of the
early transition elements lie well above the Fermi level of the late transition
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Fig. 12.3. The Slater–Pauling curve (after ref. [7]).

elements. The conductivity ratio α < 1 for alloys on the branches with positive
slope, whereas α > 1 on the branch with negative slope [7]. Moments in strong
ferromagnets are described quantitatively by the magnetic valence model [8],
which is a generalization of these ideas. The chemical valence Z of an atom is
n↑ + n↓, where n↑,↓ are the number of valence electrons with either spin. The
spin moment in units of µB is n↑ − n↓ = 2n↑ − Z. Now n↑

d is precisely 5 for
strong ferromagnets, so the magnetic valence defined by Zm = 2n↑

d − Z is an
integer. The moment m is therefore Zm +2n↑

sp where n↑ = n↑
d +n↑

sp, and 2n↑
sp is

the number of electrons in the sp band, which is practically unpolarized. In an
alloy, the average moment per atom is deduced by replacing Zm by its average
over all the atoms present;

〈m〉 = 〈Zm〉 + 2n↑
sp . (12.1)

Here n↑
d is 5 for iron and atoms to the right, but zero for atoms at the beginning

of the 3d series. Zm is −3 for Sc, Y, B ...; −4 for Ti, Zr, C ..., 2 for Fe, 1 for Co
and 0 for Ni. 2n↑

sp is about 0.3.

12.2.1 Iron–based Alloys

Besides the fact that it is not a strong ferromagnet, the problems with iron are
its anisotropy and magnetostriction (Table 12.1). K1 is fairly large for a cubic
material, and λS, which is an isotropic polycrystalline average, is the resultant
of bigger values in the 〈100〉 and 〈111〉 directions, 21 × 10−6 and −20 × 10−6,
respectively.
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Alloying iron with cobalt produces a strong ferromagnet at Fe65Co35 (Perme-
ndur) which holds the record room-temperature magnetization of 1.95 MA m−1,
corresponding to a ferromagnetic polarization µ0MS = 2.45 T. The magnetiza-
tion and Curie temperature are almost constant in FexCo100−x for 35 ≤ x ≤ 55.
The anisotropy of bcc Co is about −60 kJ m−3, so zero anisotropy occurs at
x � 55. Unfortunately λS is 60 × 10−6 and the alloy usually has low perme-
ability. The near-equiatomic compositions have a tendency to CsCl-type order
(Fig. 12.4) and a unique axis may be induced by field annealing which can lead
to Hc � 15 A m−1 and an initial permeability µI � 800.

Generally it is not possible to find a composition in a binary alloy system
where K1 and λS go to zero simultaneously. By chance this almost happens in
the Fe-Ni system (Permalloy) discussed below. A bcc iron-based ternary sys-
tem which does have a K1 = 0; λS = 0 point is Fe-Si-Al at the composition
Fe74Si16Al10 (Sendust). The alloy has a tendency to order in the Fe3Si super-
structure, and atomic order and composition must be accurately controlled to
achieve optimum properties. Polarization is 1.2 T. Sendust has been used in
write heads for magnetic recording.

Fig. 12.4. Some simple crystal structures for metals; body-centred cubic (Fe) with the
CsCl superstructure; face-centred cubic (Ni) with the CuAu3 and tetragonal CuAu(I)
superstructures; hexagonal close packed (Co).
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Another approach is to prepare thin films with a concentration of dissolved
nitrogen in excess of equilibrium by reactive sputtering. These have composition
around Fe97N3 [9]. A few percent of an element such as Al, Ta, Ti or Rh serves to
increase the solubility of nitrogen in iron or extend the stable α-phase field. The
saturation magnetostriction changes sign at about 3% N, and the use of additions
inhibits grain growth and thereby helps to stabilize soft magnetic properties by
anisotropy averaging. In soft ferromagnetic nanostructures, the characteristic
length scale for anisotropy averaging is the domain wall width which sets the
scale for the smallest possible domain size

δB = π
√

A/K1 . (12.2)

The number of crystallites of average diameter D within a volume of δ3B is N =
(δB/D)3. Anisotropy directions of the crystallites are random, so the effective
anisotropy constant is 〈K〉 � K1/

√
N . Hence

〈K〉 � K1(D/δB)3/2 . (12.3)

But it is this effective anisotropy constant which must be used to determine the
domain wall width. Substituting from (12.2) with K1 replaced by 〈K〉 yields

〈K〉 � K4
1D

6/π6A3 . (12.4)

Taking D = 20 nm and the values for iron in Table 12.1 leads to 〈K〉 �
0.6 kJ m−3, a reduction of the anisotropy by two orders of magnitude. Anisotropy
averaging in soft exchange-coupled nanostructures is a powerful way of making
them very soft indeed [10]. An example here is Finemet, a two-phase nanostruc-
ture of crystalline Fe80Si20 regions in an amorphous Fe-B matrix. The compo-
sition is Fe73.5Si15B7.5Cu1Nb3. Copper and niobium additions serve to promote
nucleation of the Fe-Si crystallites and refine the grain structure, respectively.
The anisotropy of the Fe-Si crystallites is exchange-averaged to zero and the
contributions to λS of the crystalline and amorphous regions are of opposite
sign and cancel, yielding an iron-based nanocomposite with exceptionally high
permeability. A variant on this is the Fe-Co-B system where nanometer-scale
Fe-Co-rich regions are dispersed in a boron-rich amorphous matrix. A typical
composition is Fe62Co21B17, with polarization � 1.6 T.

One other iron nitride that deserves a mention is the metastable α’-Fe16N2.
It has been reported to have a moment in thin film form as high as 3.5µB/Fe
[11], but this result have not been independently confirmed, and are at variance
with theoretical expectations. Recent surveys of the literature on this material
place its likely room-temperature polarization at 2.3(1) T [9,12]. However, it is
claimed that imperfectly-ordered thin films (� 40 nm) with a large cell volume
have a moment of 2.8µB/Fe [13], corresponding to a polarization of 2.5 T. The
tetragonal α’ phase has a large uniaxial anisotropy of order 1 MJ m−3 [12], so
anisotropy averaging here would need impracticably small crystallites, of diam-
eter 2-3 nm.
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12.2.2 Nickel–based Alloys

The fcc NixFe100−x system includes the famous Permalloy composition range
78 ≤ x ≤ 81. Permalloy is probably the best-studied soft magnetic material, as
it is very suitable for thin film devices. Permalloy is a strong ferromagnet with
a polarization µ0MS � 1.0 T. The conductivity ratio for ↑ and ↓ electrons is
α = 6 and the degree of spin polarization for emitted electrons is P = 0.37 [5].
The degree of ordering of Fe and Ni in the Cu3Au structure (Fig. 12.4b) can
be adjusted by heat treatment, and weak uniaxial anisotropy can be induced by
field annealing. Cobalt is added to fcc Ni-Fe alloys around the permalloy com-
position range to increase their magnetization and improve their susceptibility
to magnetic field treatment. It is then possible to induce the uniaxial anisotropy
by depositing the film in an applied field of order 1 kA m−1, which is preferable
to field annealing for device structures as it avoids possible interdiffusion of the
layers. In films thinner than 20 nm, the induced anisotropy Ku is proportional
to film thickness. A typical composition is Ni65Fe15Co20.

The particular feature of permalloy is that K1 and λS change sign at nearly
the same composition, making it possible to achieve an excellent soft magnetic
response in a binary system (Fig. 12.5). Small additions of Mo or Cu are used
to optimize the properties. Permalloy films have a good AMR response of 2% in
a field of about 300 A m−1. For this reason permalloy was used in AMR read
heads. Thicker films (� 1 µm) of permalloy are used in thin film write heads
for hard discs and tapes. Produced by electrodeposition [14] from a single bath
containing iron and nickel salts together with additives such as saccharine which
serve to relieve the strain in the deposited film or increase its resistivity, these
films are also employed for on-chip inductors. Uniaxial anisotropy is achieved by
electrodeposition in a magnetic field of order 40 kA m−1.

Fig. 12.5. Magnetic properties of Ni-Fe alloys.

The main drawback of permalloy is its relatively low polarization, which
limits the field that can be generated and makes it unsuitable for ultrahigh-
density write heads. The Ni50Fe50 composition is better in this respect, since
µ0MS = 1.6 T. However the ultimate recording densities will need an excellent
soft material with a polarization greater than 2.0 T, which cannot be achieved
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in the Ni-Fe system. A third region of interest in the Ni-Fe series is Invar around
Ni35Fe65, which is at the limit of the fcc phase field. Here TC is low and the nat-
ural thermal expansion over a limited range of temperature around ambient is
compensated by the temperature-dependent spontaneous volume magnetostric-
tion ωS, which is independent of applied field for a strong ferromagnet.

Anisotropy, but not magnetostriction can be suppressed by preparing Ni-Fe
alloys in an amorphous form, using boron as a glass former. Metglas 2628 a-
Fe40Ni40B20) is one such alloy. It has a random-dense-packed Bernal structure,
with boron occupying the large intersticies in the random packing. The polar-
ization, 0.8 T, is much reduced compared to Ni50Fe50 because of the presence
of boron, which has a magnetic valence of −3, and the lower density of the
amorphous dense-packed structure.

12.2.3 Cobalt–based Alloys

Cobalt normally has an hexagonal close-packed structure with a fairly large
uniaxial anisotropy of K1 = 530 kJ m−3, corresponding to an anisotropy field
Ha = 2K1/µ0MS of 0.57 MA m−1. Cobalt can be easily stabilized in an fcc
structure and the quoted Curie temperature, which is the highest known for any
material, actually refers to the fcc phase. Cobalt is used in alloys to increase
TC. The atomic moment is unusually robust and structure independent. A thin
(0.4 nm) fcc film at the interface between magnetic and nonmagnetic layers
serves to provide a magnetically-sharp interface which promotes spin-dependent
scattering [15]. Iron and boron are sometimes added to the interfacial cobalt. A
typical composition is Co87Fe9B2. Co-Fe-B is also used for the free layer of spin
valves, where the additives allow enhanced uniaxial anisotropy and improve the
thermal stability.

The anisotropy of hcp cobalt is insufficient to make a true permanent magnet,
for which the anisotropy field Ha = 2K1/µ0MS would have to be significantly
greater than the magnetization. Nevertheless, thin films with in-plane c-axis ori-
entation can exhibit useful coercivity. Magnetization is in-plane in most magnetic
thin film device structures and the demagnetizing field is small. Thin film media
for hard discs are based on hexagonal cobalt with Cr, Pt and B additions which
help create a layer of magnetically-decoupled Co-rich crystallites about 20 nm
thick and 10-20 nm in size. Coercivity is � 300 kA m−1. A typical composition
is Co67Cr20Pt11B6.

Cobalt-based alloys with a uniaxial crystal structure easily develop a very
large anisotropy field and exhibit permanent magnet properties. A good exam-
ple is YCo5 where yttrium occupies alternate planes in the hexagonal struc-
ture. The anisotropy field Ha = 12.3 MA m−1. Another structure with uniaxial
anisotropy is the face-centred tetragonal CuAu(I) structure adopted by CoPt,
and illustrated in Fig. 12.4b. Alternate planes are composed of Co and Pt, and
the anisotropy field is 9.8 MA m−1. The cubic CuAu3 type of order occurs
in CoPt3, which is a semihard material that has been used in demonstration
MRAM devices. Polycrystalline films of Co-Cr-Pt and CoPt with the c-axis in-
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plane are used as permanent magnets to longitudinally bias and stabilize the
domain structure in both AMR and GMR read heads.

Cobalt-based alloys with the fcc structure and amorphous cobalt-based alloys
are much softer. In the Fe-Co-Ni system, nanocrystalline electrodeposited alloys
at the border of the fcc and bcc phase fields have exchange-averaged anisotropy
and near-zero magnetostriction. There are reports of polarization in excess of
2.0 T for Co65Ni12Fe23 [16], Co56Ni13Fe31 [17] and Co52Ni29Fe19 [18]. Amorphous
cobalt-rich alloys of composition (CoFe)80B20 can have zero magnetostriction,
and are excellent high-permeability materials. The amorphous Co90Zr10 system
also shows a zero magnetostriction point when a few percent of tantalum or
rhenium is substituted for zirconium, or some nickel is substituted for cobalt.
Polarization is about 1.4 T. The amorphous alloys are mechanically much harder
than permalloy, and they are suitable for thin film write heads.

12.3 Antiferromagnets

It is common practice to pin the direction of magnetization of one of the fer-
romagnetic layers in a spin valve by exchange coupling to an antiferromagnet
[19]. When the Curie temperature of the ferromagnet is greater than the Néel
temperature of the antiferromagnet TC > TN the direction of magnetization of
the pinned layer may be set by cooling the exchange couple in a magnetic field.
Otherwise it may be necessary to deposit or anneal the antiferromagnet in a large
applied field. The direction of magnetization of the free layer in a spin valve can
switch from antiparallel to parallel to the pinned layer under the influence of a
small stray field which is sensed by the device (parallel anisotropies). Otherwise
the direction of magnetization of the free layer may be set perpendicular to the
direction of magnetization of the pinned layer with a small induced anisotropy
Ku; the stray field then causes the magnetization of the free layer to rotate
continuously (crossed anisotropies). These cases are illustrated schematically in
Fig. 12.6.

Considering only the pinned layer of thickness tp, its energy per unit area in
the presence of an external field H is

E/A = −µ0MfHtp cos(θ) + Kutp sin2(θ) − σ cos(θ) , (12.5)

where σ is the interface exchange coupling, which is of order 0.1 mJ m−2. The
origin of the exchange coupling at the interface is still a matter for discussion
[19], but a common view is that the ferromagnetic and antiferromagnetic axes are
perpendicular at the interface, and that a domain wall develops in the ferromag-
netic layer, provided the antiferromagnetic layer exceeds the critical thickness t0
needed to generate exchange bias. t0 ranges from 7 nm for FeMn to 15 nm for
a-TbCo3 or > 50 nm for α-Fe2O3 [20].

The exchange coupling in (12.5) is represented by a field Hex = σ/µ0Mptp
acting on the pinned layer, which depends on temperature and falls to zero at
a blocking temperature Tb < TN. The unblocking of exchange bias can reflect a
thermally-excited relaxation mode impeded by weak anisotropy, such as rotation
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of the antiferromagnetic axis in the 111 plane of NiO, or else may reflect an
atomic order-disorder transition. A typical room-temperature value of Hex for
a 5 nm thick pinned layer with µ0M = 1 T is 20 kA m−1. Some representative
multilayer structures including an antiferromagnetic layer are shown in Fig. 12.7.
In dual spin valves, the stacks are mirrored about a central free layer, which is
sandwiched between two pinned layers. The quality of a spin valve depends on
the field needed to switch the free layer, and the quantity ∆ρ/ρ = (ρ↑↓−ρ↑↑)/ρ↑↑

where the double superscripts refer to the antiparallel or parallel configurations
for the pinned and free layers. In a simple two-current model, this is related to
α, the conductivity ratio for ↑ and ↓ electrons in the spin valve structure by the
formula ∆ρ/ρ = (1 − α2)/4α [20].

(a) (b)

Fig. 12.6. Schematic response of a spin valve structure with (a) parallel and (b) crossed
anisotropies.

Most of the antiferromagnets of interest for spin electronic devices are man-
ganese alloys, whose properties are summarized in Table 12.3. Some oxides and
amorphous materials are also useful. Manganese antiferromagnets close to the
equiatomic composition may have a disordered fcc structure, or else adopt the
face-centred tetragonal CuAu(I) structure illustrated in Fig. 12.4. The man-
ganese alloys exhibit a great variety of collinear and noncollinear antiferromag-
netic structures, yet all are able to provide exchange bias. For example, FeMn,
which has been widely studied with permalloy as the adjacent ferromagnetic
layer, has a disordered fcc crystal structure, and a magnetic structure with four
sublattices oriented along the four 〈111〉 directions [4]. NiMn has a higher block-
ing temperature, and is chemically more inert than FeMn. It has the fct structure,
and a magnetic structure of antiferromagnetic 002 planes, with S ‖ a. The quest
for a high blocking temperature and the ability to conveniently set the antiferro-
magnetic axis has led to investigation of Ir-Mn, Rh-Mn and Pt-Mn alloys as well
as pseudobinaries such as (Pd1−xPtx)Mn and Cr-Mn alloys. The bulk magnetic
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Table 12.3. Antiferromagnetic materials for exchange bias [19,20,21]. S denotes the
spin direction. #Order-disorder transition. ∗Sperimagnetic; TN is the Néel temperature,
Tb an irreversible transition.

TN (K) Tb (K) σ (mJ m−2)
FeMn fcc; four noncollinear 510 440 0.10

sublattices; S ‖ 111
NiMn fct; antiferromagnetic 1050# 700 0.27

002 planes, S ‖ a

PtMn fct; antiferromagnetic 975 500 0.30
002 planes, S ‖ c

RhMn3 triangular spin structure 850 520 0.19
Ir20Mn80 fct; parallel spins in 690 540 0.19

002 planes, S ‖ c

Pd52Pt18Mn50 fct; antiferromagnetic 870 580 0.17
002 planes

a-Tb25Co75
∗ Tcomp = 340 K 600 > 520 0.33

NiO parallel spins in 525 460 0.05
111 planes, S ⊥ 〈111〉

α-Fe2O3 canted antiferromagnet, 950
S ⊥ c

structures of the antiferromagnets summarized in Table 12.3 are not necessarily
those of the thin films used for exchange bias.

It is important that the processing conditions needed for the magnetic mate-
rial are compatible with the other materials present in the device. If, for example,
magnetic devices such as MRAM are to be integrated with silicon electronics,
the exchange couple should be stable at temperatures used in silicon processing,
typically > 300◦C for one hour to reduce radiation damage, and 200◦C for up
to six hours for packaging. Ir20Mn80 might be suitable in this respect [22,23].

Some antiferromagnetic oxides are also useful. NiO has the highest Néel tem-
perature of the monoxides, but Tb is rather low; the anisotropy can be enhanced
by cobalt substitution. Nevertheless NiO has been used in commercial spin-
valves. α-Fe2O3 has a high Néel temperature, but a thick layer is needed be-
cause of the low anisotropy of the antiferromagnet due to the proximity to room
temperature of the Morin transition, where the antiferromagnetic anisotropy
constant K1 changes sign. The orthoferrites RFeO3, which have TN in the range
620-740 K, are also being investigated. Oxides have the bonus that they act as
specularly reflecting layers, which enhance the efficiency of spin valve structures.

A more recent development is the artificial antiferromagnet (AAF) [24]
(Fig. 12.7). This is a stack of two or more ferromagnetic layers separated by
layers of a nonmagnetic metal whose thickness is chosen to provide an antifer-
romagnetic interlayer exchange. Best is cobalt separated by a very thin layer,
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� 0.6 nm, of ruthenium. Iron or iron and boron additions facilitate the creation
of induced anisotropy in the cobalt. Copper can be used as a weaker coupling
layer [25]. The upper cobalt layer of the AAF can serve as the pinned layer of
the spin valve, and layer thicknesses adjusted to give no stray field on the free
layer. One of the exchange bias antiferromagnets just discussed can then be
used to pin the lower cobalt layer, (Fig. 12.7). Annealing in a rather large field
(� 1 MA m−1) is needed to saturate the AAF and fix the antiferromagnetic
axis, but spin valves with an AAF pinned layer (Fig. 12.7) show better thermal
stability and larger exchange bias than the basic configuration (Fig. 12.7)
[26,27]. Stacks for dual spin valves with artificial antiferromagnets become
impressively complex, with up to 15 layers [28] composed of as many as seven
different materials, four of which are magnetic (AF bias layer, AAF magnetic
layers, free layer, interface layer).

(a) (b) (c) (d)

Fig. 12.7. Magnetic multilayers: (a) simple spin valve with an antiferromagnetic pin-
ning layer, (b) double spin valve (c) an artificial antiferromagnet, (d) a spin valve based
on an artificial antiferromagnet. The interfaces between the magnetic layers (F1, F2)
and the spacer layer (unshaded) are often decorated with an ultrathin cobalt layer to
improve ∆ρ/ρ for the devices.

12.4 Oxides and Half–metals

Thin oxide layers, usually 1-2 nm of nanocrystalline Al2O3, are used as barrier
layers in planar tunnel junctions. These current-perpendicular-to-plane devices
have at least twice the sensitivity (∆ρ/ρ) of GMR spin valves. Their high intrin-
sic resistance and low power consumption makes them attractive for applications
such as MRAM [29]. For read heads, a lower resistance is required, and the oxide
barrier must then be very thin [30]. The most popular method for producing the
Al2O3 barrier layer is by plasma oxidation of a layer of aluminum metal. Ther-
mal oxidation in air is also used, but the best resistivities, of order 1 kΩ µm2,
may be obtained by oxidation assisted by ultraviolet light [31]. Other barrier
oxides which have been investigated include SrTiO3, TiO2 and CeO2. The mag-
netoresistive response of the tunnel junction depends on the nature of the barrier
layer [32]. The ferromagnetic electrodes in almost all the devices showing a useful
effect at room temperature have been the 3d alloys discussed in Sect. 12.2.



12 Materials for Spin Electronics 291

Ferromagnetic metallic oxides and related compounds can act as sources
and conduction channels for the spin-polarized electrons. The 3d metals, even
those that are strong ferromagnets, suffer from incomplete spin polarization of
the conduction electrons because of the presence of the 4s/4p bands, which
are not spin-split. In principle, a more favourable situation can arise in oxides
where hybridization of the outer metallic electron shells with the 2p(O) orbitals
produces a gap of several eV between them. The 3d bands and the Fermi level
tend to fall in this s-p gap. When the Fermi level intersects only one of the
spin-polarized 3d bands, and there is a gap in the density of states for the other
spin direction we have a half-metallic ferromagnet (Fig. 12.8). A feature of a
stoichiometric half-metallic ferromagnet is that the spin moment should be an
integral number of Bohr magnetons. This follows since n↑ + n↓ is an integer in
a stoichiometric compound and n↓ is an integer on account of the gap. Hence
n↑ − n↓ is an integer.

(a) (b) (c) (d)

Fig. 12.8. Schematic densities of states for (a) a weak ferromagnet, (b) a strong ferro-
magnet and (c) and (d) half-metallic ferromagnets where a gap arises for minority or
majority-spin electrons.

Other compounds containing a main group element such as Sb, Si which
hybridizes with the outer metallic orbitals can also have half-metallic character.
Examples are the Heusler alloys NiMnSb, PtMnSb and Co2MnSi. These alloys

Fig. 12.9. Crystal structures of the Heusler alloys NiMnSb and Co2MnSi.
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have an ordered fcc structure, with the atoms ordered on three or four of the
simple cubic sublattices (Fig. 12.9). Curie temperatures are 728, 572 and 985 K.
Tunnel junctions have been built using NiMnSb [33]. Data on some half-metals
is collected in Table 12.4.

We now consider a few oxides in turn. The first is CrO2 which has the dis-
tinction of being the only simple oxide that is a ferromagnetic metal. The rutile
structure is illustrated in Fig. 12.10. There the Cr4+ ion is surrounded by a
nearly-undistorted oxygen octahedron. The primary effect of the crystal field
due to the six oxygen anions is to split the 3d orbitals into a t2g triplet (xy,
yz, zx) and an eg doublet (x2-y2, 3z2-r2), with a crystal-field splitting of about
1.5 eV. (Fig. 12.10) The 3d orbitals overlap to form bands; the overlap of the xy
orbitals in the rutile structure is slight, so they form an occupied nonbonding
level with a localized S = 1/2 core spin. The other t2g orbitals mix to form a
broader half-filled band with a dip in D(E) at EF. The exchange mechanism
in CrO2 is a combination of ferromagnetic superexchange together with double
exchange due to hopping of the band electrons from site to site, where they are
coupled to the S = 1/2 cores by the on-site Hund’s rule exchange. CrO2 is a
black metal with a low resistivity (� 0.05 µΩ m) in the liquid helium range.
There the mean free path is long enough for a classical B2 magnetoresistance to
be observed [34]. However, ρ increases rapidly as T approaches the Curie point
TC = 398 K, and the mean free path is reduced to the scale of the interatomic
spacing by strong spin-flip scattering.

Table 12.4. Half-metallic ferromagnets.

Structure Lattice TC m0 MS

parameter (µB/
(pm) (K) formula) (MA m−1)

NiMbSb Cubic 592 728 4.0 0.71
CrO2 Tetragonal 442; 292 398 2.0 0.40
(La0.7Sr0.3)MnO3 Rhombohedral 548; 60.4◦ 380 3.6 0.31
Sr2FeMoO6 Tetragonal 557; 791 426 3.5 0.15

Other metallic ferromagnetic oxide systems where the double exchange mech-
anism is important are the mixed-valence manganites (La1−xAx)MnO3; A = Ca,
Sr or Ba, x � 0.3 [35]. These oxides exhibit a metal-insulator transition at the
Curie point, which reaches a maximum value of 380 K in (La0.7Sr0.3)MnO3. This
is accompanied by colossal magnetoresistance, an intrinsic effect associated with
a field-induced increase of spontaneous magnetization near TC. The oxides have
the perovskite structure, and the electronic structure is shown schematically in
Fig. 12.11. The half-filled eg band associated with Mn3+ is split in LaMnO3 by
the Jahn-Teller effect. The band splitting is sufficient to make the end-member a
narrow-gap antiferromagnetic semiconductor. Doping with A2+ introduces holes
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Fig. 12.10. Crystal structure of CrO2. The effect of the crystal field on the one-electron
3d levels is shown, together with a schematic density of states.

into the lower spin-split eg band, and when these are sufficiently numerous, the
holes can move freely among the ferromagnetically-aligned t32g, S = 3/2 cores.
Hopping between the core spins provides the double exchange. If the cores are
misaligned by an angle Ψ , the hopping probability varies as cos(Ψ/2). Electron
transport is therefore inhibited in the magnetically disordered state above TC,
where the carriers are polarons of some description.

Magnetite, Fe3O4, is a ferrimagnet crystallizing in the spinel structure with
a single 3d↓ electron hopping among the 3d5↑ cores on octahedral sites. This
corresponds to a half-metallic density of states, but there is a strong tendency
to form polarons below the Curie temperature (860 K), and the conductivity
shows a small activation energy.

The magnetoresistance effects of most interest in the manganites, Fe3O4 and
CrO2 are associated with transport of spin polarized electrons from one ferro-
magnetic region to another with a different direction of magnetization. These
regions are not usually separated by a domain wall, but by a grain boundary, an
interparticle contact or planar tunnel barrier which does not transmit exchange
coupling. The effects are seen in low fields and in the liquid helium tempera-

Fig. 12.11. Crystal structure of (La0.7Sr0.3)MnO3. The effect of the crystal field on
the one-electron 3d levels is shown, together with a schematic density of states.
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ture range they can reach 50% in CrO2 pressed powder compacts, and several
hundred % in planar manganite tunnel junctions [35]. Small effects have been
observed in CrO2 tunnel junctions [36,37]. The MR effects fall away fast on
increasing temperature because of spin depolarization of the emitted electrons.
Prospects of using CrO2 or mixed-valence manganites in devices are dim, at
least in a typical temperature range of −40 to 120◦C. Progress with oxide spin
electronics will require half-metallic compounds with higher Curie temperatures.

 
 Fig. 12.12. Crystal structure of Sr2FeMoO6. The effect of the crystal field on the

one-electron levels is shown, together with a schematic density of states.

Attention has recently turned to double perovskites with general formula
A2BB’O6 where the B and B’ cations occupy an NaCl-type superlattice
(Fig. 12.12). The compound Sr2FeMoO6, for example, has a Curie temperature
of 421 K and electronic structure calculations [38] indicate a half-metallic
structure of the type shown in Fig. 12.6d. The majority spins are associated
with the Fe3+, 3d5 core spins, and the minority carriers are in a ↓ band of
mainly 4d1(Mo) character which is mixed with the empty iron t2g ↓ orbitals.
The ferromagnetic exchange is due to this electron hopping among the 3d5↑

cores. There is no Fe-O-Fe superexchange on account of the NaCl-type order
of Fe and Mo. Quite a large granular magneto-resistance has been reported at
room temperature [39]. Other double perovskites such as Sr2FeReO6 have been
reported to have a substantially higher Curie temperature (540 K).

Compared to the metallic multilayer structures which have undergone very
rapid development in the ten years or so since the discovery of GMR, mainly in
response to the urgent demands of the magnetic recording industry, research on
optimizing oxide structures is in its infancy. Much has to be done to understand
and prevent spin depolarization at the interfaces, and there is scope for new
materials development focussing on increasing the Curie temperature. The oxides
offer the prospect of very large magnetoresistance effects which could eliminate
the need for associated electronics in MRAM, as well as providing streams of
spin-polarized electrons which can advance the science of spin electronics in the
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21st century. The oxides are robust and may lead to low cost sensors for a range
of mass-market applications.

12.5 Ferromagnetic Semiconductors

Integration of spin electronics with conventional electronics would entail the ma-
nipulation of spin-polarized currents in silicon or gallium arsenide (see chapter 17
for further details on ferromagnetic semiconductors). There is evidence that the
spin diffusion length in these semiconductors is long, with values of many mi-
crons being reported for Si or GaAs. The difficulty has been to find an effective
way of injecting the spin-polarized electrons.

A fully-dopable ferromagnetic semiconductor would be a formidable advance
for spin electronics. Some ferromagnetic semiconductors do exist [40], includ-
ing EuX; X=O, S, B6, and the chalcogenide spinels CdCr2X4; X = S, Se. The
MCr2S4 spinels with M = Mn, Fe, Co are ferrimagnetic semiconductors. Mn-
doped GaAs is a tetrahedrally bonded material which has been successfully used
for spin injection into GaAs [41], opening the prospect of a marriage of spin
electronics and opto-electronics. The outstanding problem with all this that the
Curie temperatures of all these ferromagnetic semiconductors is far below room
temperature. It is predicted that Mn-doped GaN or ZnO should have Curie tem-
peratures in excess of 300 K [42]. If this is true, a new chapter in spin electronics
may open.

Problems

1. Use the magnetic valence model with 2n↑
sp = 0.6 to deduce m0, the mag-

netic moment in µB/formula unit, for the following alloys: Ni65Fe15Co20,
Fe40Ni40B20 and Co88Zr8Ta4. Give the corresponding values of the polar-
ization µ0MS in tests assuming the first two alloys are fcc with a packing
fraction of 0.74, and the 3d transition elements in the second two alloys are
random close-packed with a packing fraction of 0.64. Why are your values of
polarization overestimated?

2. How small would the cobalt crystallites have to be if a polycrystalline film of
hcp cobalt was to have an effective anisotropy constant of 1 kJ m−3? Explain
why alloy additions are used to decouple the cobalt crystallites in thin film
magnetic media.

3. Use (12.5) to deduce the values of the external magnetic field which must
be applied along the anisotropy axis to switch the magnetization of a pinned
layer. Evaluate these fields for the case of a 10 nm layer of permalloy pinned
by NiMn if Ku = 500 J m−3. Estimate how big a field would be needed to
obtain a symmetric hysteresis loop.

4. From the value of the magnetic moment M0 for Sr2FeMoO6 given in Ta-
ble 12.4, deduce the fraction of Fe and Mo atoms that are on the wrong sites
in the NaCl-type superlattice. Justify the assumptions you make regarding
the directions of magnetization of the misplaced atoms.
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5. You are looking for a new ferromagnetic material to be used as a source of
polarized electrons for spin electronics. Make a list of properties, in order of
importance, that it should possess.
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E. du Trémolet de Lacheisserie (ed.) “Magnétisme”, 2 vols., Presses Universi-
taires de Grenoble 1999, 1006 pp.

References

1. F. Y. Yang, K. Liu, C. L. Chien, and P. C. Searson, Phys. Rev. Lett. 82, 3328
(1999).

2. E. P. Wohlfarth in “Handbook of Ferromagnetic Materials” (E. P. Wohlfarth, ed.)
vol. 1 North Holland, Amsterdam p.1 (1980).

3. I. I. Mazin, Phys. Rev. Lett. 83, 1427 (1999).
4. “Magnetic Properties of Metals” , H. P. Wijn (ed.) Springer, Berlin 1991.
5. R. J. Soulen, J. M. Byers, M. S. Osofsky, B. Nadgorny, T. Ambrose, S. F. Chong, P.

R. Broussard, C. T. Tanaka, J. S. Moodera, A. Barry, and J. M. D. Coey, Science
282, 88 (1998).

6. A. Fert and L. Piraux, J. Magn. Magn. Mater. 200, 338 (1999).
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13.1 Introduction

The most interesting materials for spin electronic devices are thin films of mag-
netic transition metals and magnetic perovskites, mainly the doped La-mangan-
ites [1] as well as several oxides and metals for passivating and contacting the
magnetic films. The most suitable methods for the preparation of such films
are the physical vapor deposition methods (PVD). Therefore this report will be
restricted to these deposition methods.

PVD are vacuum deposition methods, where the thin film material will be
transferred from solid, liquid or gas phase precursors into a vapor phase by
different vaporization methods and condensed after the transport as a molecular
beam in vacuum or by diffusion through a diluted background gas on a suitable
substrate, the temperature of which must be below the melting point of the
deposit. Chemical compounds are usually decomposed during their vaporization.
Their deposition therefore requires a chemical reaction of the growing film surface
with a suitable reactive gas.

The properties of the vaporized species can be strongly influenced with re-
spect to the particle energy and distribution by the vaporization process, during
the transport and on the surface of the growing film by different activation or de-
activation processes allowing the control of the growth process, thereby changing
the structure and properties of the films in a complicated manner.

Regarding the vaporization methods we can classify the PVD as thermal
evaporation and sputtering methods.

The properties of the deposited films are determined essentially by the growth
conditions during their deposition. There are many factors, which can influence
the growth processes and modify the structure of the films. In general three
stages are essential in the thin film deposition processes: nucleation and coales-
cence, followed by different growth processes as special cases of crystal growth
(columnar, polycrystalline, epitaxial). The most important growth mode for the
preparation of epitaxial films is the 2-dimensional layer–by–layer growth, which
can be controlled by RHEED and other in situ characterization methods. Po-
tential candidates for this deposition technique are the superconducting and
magnetic perovskites investigated in the frame of the OXSEN program.

M.J. Thornton and M. Ziese (Eds.): LNP 569, pp. 298–315, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



13 Thin Film Deposition Techniques (PVD) 299

13.2 Thin Film Deposition Methods

13.2.1 Thermal Evaporation

The thermal evaporation of a solid precursor of the thin film material takes
place by heating the source above the melting point, where the vaporization of
the melt increases with increasing temperature in an exponential manner and
a vapor beam will be spread into the vacuum chamber having a low residual
pressure. The most simple evaporation sources are resistance heated sources [2].
The basic components of a deposition system with a thermal evaporation source
is illustrated in Fig. 13.1.

Fig. 13.1. Vacuum system for deposition from resistance heated sources

Because the distribution of the vapor flux has approximately a cos(Θ) charac-
teristic, the condensation on planar substrates provides films of inhomogeneous
thickness. Therefore a large source-substrate distance is required or the sub-
strates must be moved in a suitable manner. Resistance heated sources are re-
stricted to materials of low or moderate melting points because of undesired
reactions between the melt and the resistance carrier and his temperature limita-
tions. These disadvantages can be avoided by the electron beam evaporation [3].

In the e-beam evaporator a focused electron beam with 10 keV and 1 A
is used for the evaporation of the source material from a water cooled crucible.
High melting metals and chemical compounds can be evaporated with high rates
limited only by the development of the vapor pressure above the heated hearth
(10 Pa).

The main disadvantage of thermal evaporators is the different evaporation
speed for different materials at the same temperature leading to deviations of the
film composition compared with the source material, when it consists of alloys
or compounds.
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A possible solution of this problem is the flash evaporation from a very hot
crucible or the laser ablation [4] as a flash like evaporation of a target spot
heated by a short laser pulse, suitable not only for the stoichiometric evapo-
ration of complex compounds with high melting points but also for reactive
evaporation at relatively high reactive gas pressures in the vacuum chamber.
Figure 13.2 shows the typical arrangement of a laser ablation apparatus with
the main components of a pulsed laser (Nd: YAG, Excimer) and a rotatable
target carrier combined with a heated substrate holder and a RHEED system
for epitaxial film preparation [5].

Fig. 13.2. Schematic diagram of a typical laser ablation apparatus for preparation of
YBCO films [6]

The evaporation mechanism is somewhat complicated, consisting of several
processes like thermal evaporation of a thin surface region followed by the ex-
plosion of the neighboring overheated target layer and radiation induced de-
composition by pair breaking, resulting in emission of atoms, molecules, clusters
and macroparticles with different velocities. The explosive part has a very sharp
cos11(Θ) distribution.

Optical and electronic excitations of the emitted particles result in a lumi-
nous plasma plume affecting the film growth in a positive manner. Deposition in
UHV for the growth of high quality epitaxial films as well as high rate deposi-
tion and reactive deposition at high reactive gas pressure are possible (suitable
especially for BiOx– and PbOx–containing compounds). Disadvantages are the
incorporation of droplets and the limitation to relative small substrate areas.

13.2.2 Ion Plating

A method to use the influence of energetic ions on the film growth process is the
so called ion plating, a combination of thermal evaporation with a gas discharge,
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induced by a high voltage between the substrate/film-system and the grounded
chamber walls. By the discharge the residual or reactive gas in the chamber and
the evaporated material will be partly ionized and accelerated to the surface of
the growing film. A typical set up is sketched in Fig. 13.3 [7].

Fig. 13.3. Ion vapor deposition chamber with electron beam heated evaporation source
[7]

13.2.3 Molecular Beam Epitaxy (MBE)

For the preparation of high quality epitaxial thin films the growth process must
be carefully controlled layer by layer. Therefore low deposition rates (1 mono-
layer/s) are required. In order to avoid the disturbing influence of residual gas
impurities UHV conditions are necessary allowing at the same time the instal-
lation of sensitive in situ characterization equipments like RHEED and LEED
either in the deposition chamber or in a separate preparation chamber without
vacuum breaking.

The construction of the evaporation sources must consider all the special
conditions of a precise low rate deposition with controlled evaporation rates in a
very pure UHV–system. In this sense MBE is a refined evaporation method for
epitaxy of pure metals, defect-free semiconductors and superlattices with perfect
interface morphology and even for the deposition of high quality epitaxial oxides
like high-Tc- superconductors and magnetic perovskites. A schematic of typical
MBE systems is shown in Fig. 13.4 [8].

As evaporation sources so called Knudsen cells will be applied, allowing the
stabilization of a defined vapor pressure inside the cell by a precise temperature



302 E. Steinbeiss

Fig. 13.4. Molecular Beam Epitaxy [9]

control of the heater as a presupposition for the realization of a constant flux
vapor beam with a low flux rate. In the case of chemical compounds the Knudsen
cell can be completed by a cracker section for the decomposition of the vaporized
material [10]. The same cracker technique can be used for the production of a
vapor beam from a gasphase precursor.

Instead of thermal cracking the modern effusion cells use plasma sources,
either with rf-discharges or as ECR microwave discharges, which are useful also
for the activation of reactive gases introduced into the UHV system for the
epitaxial growth of oxides.

13.2.4 Sputtering Methods

In contrast to the evaporation methods the sputtering methods are characterized
by a nonthermal mechanism for the transfer of the solid target material into the
vapor phase, which is based on the impulse transfer from accelerated energetic
particles to the surface and near surface atoms of the target [7].

The impact of energetic particles (with energies between a few eV and 1 keV)
on the surface of a solid state results in a number of secondary processes sum-
marized in Fig. 13.5.

Besides implantation, trapping, chemical effects, mixing and lattice destruc-
tion important essentially with respect to the growth of thin films under ion
bombardment several types of particles can be emitted by single and multi-
step impulse transfer and a part of the incoming ions are simply reflected. The
sputtered particles consist mainly of single neutral atoms and a small part of
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molecules. The theoretical background was developed for the first time by Sieg-
mund [11] and for the low energy range by Bohdansky [12]. From these theories
the most important equations for the sputtering yield, the angle and energy
distributions for the sputtered and reflected particles can be derived. For ion
energies E0 below 1 keV the sputtering yield is given by

Y (E) = 6.4× 10−3 M γ5/3 E
1/4
0 (1− E∗ −1)7/2 , (13.1)

where γ = 4Mi M / (Mi + M)2, E∗ = E0 /Eth and Eth is the threshold energy
for sputtering. Mi and M are the masses of the incoming ions and the target
atoms, respectively.

Fig. 13.5. General ion-surface interaction processes [7]

Essential for the impulse and energy transfer is the mass ratio between in-
coming ions and the target atoms, which is optimal for equal masses. Target
atoms of different masses are therefore initially sputtered with different yields
until the surface density of the atoms is changed in such a degree, that the sput-
tering yields of the different species correspond to the target bulk composition,
a great advantage for the deposition of multicomponent alloys and compounds.
A further feature is the dependence of the sputtering yield from the angle of
incidence with a maximum of the yield near an incidence of 60◦, important for
surface planarization by ion etching or for optimization of the sputtering yield
using ion sources under optimal incidence [13].

The sputtering yield shows a sharp threshold for ion energies near the binding
energies of the target atoms. The energy distribution of the sputtered particles
has a flat maximum just below the binding energy of the target atoms of a few
eV, which can be shifted and strongly increased to lower energies by collisions
with gas atoms between target and substrate resulting in a thermalization of the
sputtered particles controlled by the total gas pressure in the vacuum chamber
[14]. The same thermalization takes place for the reflected energetic particles.
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The energetic particles for the bombardment of the sputter target can be
produced by a separate ion source or by different discharge types inside the
deposition chamber. Therefore the different sputtering methods are usually clas-
sified after the applied type of the gas discharge.

Glow Discharge Diode Sputtering. The simplest way to produce energetic
particles in a deposition chamber is the ignition of a self sustaining dc glow
discharge with a metallic target as a cathode and the substrate or the chamber
walls as an anode.

The essential part of the discharge is the cathode sheath where a high electric
field accelerates the positive ions of the discharge created by the electron impact
around the negative glow region of the plasma. These ions bombard the cathode
surface producing the sputtered particles and secondary electrons important for
sustaining the discharge (Fig. 13.6).

Fig. 13.6. Schematic of a dc glow discharge sputtering system [15]

The simple glow discharge sputtering system has many serious disadvantages
connected with the relatively high pressure of the sputter gas, the high discharge
voltage, the strong electron bombardment of the substrate and the limitation on
conductive targets.

Triode and RF–Sputtering Systems. Some of these disadvantages can be
avoided by the use of an rf-discharge or by a low pressure dc-discharge sustained
by an auxiliary thermionic emitter.

An additional advantage of the rf-discharge is the possible use of isolating
target material like oxides or nitrides. The application of an rf-discharge for
sputtering is based on the different mobilities of electrons and ions leading at
higher frequencies (typically 13.5 MHz) to a negatively biased cathode, when a
capacitive coupling to the power supply is used [16]. In this case the ions are
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accelerated in a dc electric field, whereas the ionization is enhanced by the oscil-
lating electrons, thus reducing the gas pressure necessary for the self-sustaining
discharge.

Ion Beam Sputtering (IBS). More flexible is the ion beam sputtering method
based on a separate ion source for the generation of energetic particles, where
the ion flux and ion energy can be controlled independently and the angle of
incidence on the target can be optimized with respect to a maximal sputter
yield [7,17]. With dual beam ion sources the film growth can be influenced ad-
ditionally by the bombardment with energetic particles of a defined energy and
angle of incidence, frequently used for activated reactive sputtering or for the
production of highly textured films by selective resputtering of misoriented crys-
tallites (IBAD). The schematic diagram of the IBS-system, the ion source and
their arrangements are illustrated in Fig. 13.7.

Fig. 13.7. Schematic diagram of the IBS system using a Si target and O2 – N2 dis-
charges [18]

Magnetron Sputtering. One of the main disadvantages of dc glow discharges
is the low ionization rate which can be strongly increased by introducing mag-
netic fields in suitable configurations. One of the most effective magnetic field
configurations is a magnetic tunnel field above the target surfaces leading to a
steered movement of the electrons and their confinement along a trace, where
the magnetic field has a perpendicular component to the electric field.

This so called magnetron configuration, illustrated in Fig. 13.8 [7] produces
a region of high plasma density along the magnetic tunnel providing a high ion
current at moderate voltages, increasing with I ∼ V n with n = 5 . . . 10 even
at pressures below 1 Pa. Using an anode near the plasma track the substrate
is protected against electron bombardment. In some cases the current and the
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sputtering rate can be increased to a degree, where the vaporized target mate-
rial can sustain the discharge without an additional background gas. Therefore
magnetron sputtering is frequently used for the high rate sputtering of metals
like Al or Cu.

Fig. 13.8. Schematic of magnetron sputtering [7]

The magnetron system can be adapted to many special deposition problems
simply by the change of the magnetic field configuration.

The so called unbalanced magnetron was proposed by Window and Savvides
[19] and will be widely used for the preparation of hard films like TiN or dia-
mondlike carbon. The substrate is biased by energetic electrons moving along
field components perpendicular to the target and substrate surfaces.

More suitable and controllable is the bias effect using a magnetic field com-
bination consisting of a central permanent magnet and a surrounding coil pro-
ducing a magnetic field perpendicular to the target surface controlled by a dc
current. Figure 13.9 shows the design of this unbalanced magnetron proposed by
Orlinov [20] and the effect on the floating potential of the substrate as a function
of current through the coil.

Whereas the bombardment of the growing film with energetic particles by
bias methods is very useful for the deposition of simple metals, simple oxides
and nitrides with special structural peculiarities, the bombardment has crucial
consequences on the stoichiometric composition of complex alloys and chemical
compounds. Because the bias voltage corresponds with the threshold voltage of
several species a very selective resputtering takes place resulting in a large shift
of the film composition compared with the target composition.

Extremely effective are negative ions generated at the surface of electrone-
gative oxide targets like YBCO or Sr doped La-Manganites. These ions will be
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Fig. 13.9. (left) Design of an unbalanced magnetron and (right) floating potential of
the substrate as a function of the current IS through the coil

accelerated by the cathode fall up to energies of 100 eV. In order to avoid the ne-
gative effects of ion bombardment so called off–axis arrangements are frequently
used protecting the substrate and the growing film against resputtering effects
[21].

Very suitable is the cylindrical magnetron design in combination with an
anode, which can be used to control the extension of the plasma region, in this
way controlling the bias voltage of the substrate (Fig. 13.10).

Fig. 13.10. Inverted cylinder magnetron with quasi off axis substrate arrangement

13.3 Thin Film Growth

The properties of thin films are determined essentially by the growth conditions
during their deposition. There are many factors, which can influence the growth
processes and modify the real structure of the film. Although many details of
the thin film deposition can be explained already sufficiently, a complete theory
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of the thin film growth mechanisms does not yet exist, so that the optimization
of the deposition parameters is dominated mainly by empirical points of view
and experience. The reason is the depressingly large array of factors responsible
for the growth processes and the developing of film structure and the difficulty
to measure and control them in situ during the film deposition.

In general three steps are essential in the thin film deposition process: nucle-
ation and coalescence, followed by different growth processes as special cases of
crystal growth (columnar, polycrystalline, epitaxial).

13.3.1 Nucleation

The first steps of thin film deposition are determined by different interactions of
the arriving atoms with the surface of the substrate, listed in Fig. 13.11 [15,22]:

• adsorption at special sites
• surface diffusion
• desorption
• creation of clusters (nuclei) by capture of adatoms.

Fig. 13.11. Processes at the substrate surface [15]

A first theoretical description of these processes from first principles was car-
ried out by Zinsmeister [22]. The creation rate of nuclei can be described by a set
of differential equations as a function of the impact rate q, the desorption time
τA, the capture rate λi and the decay rate of the clusters κi. In practice the solu-
tion of this system of differential equations is not possible. Many approximations
are necessary resulting in a semi-empirical description of the nucleation process.
The nucleation is finished by the coalescence of the nuclei followed by the growth
of amorphous or polycrystalline films, if the nuclei have statistically distributed
crystallographic orientations or by the growth of monocrystalline films, if the
nuclei are epitaxially oriented by a monocrystalline substrate and a sufficient
high substrate temperature.
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13.3.2 Thornton Diagram

A phenomenological description of the film growth and structure as a function of
the surface mobility of the adatoms depending on the substrate temperature and
the residual gas pressure was given by Thornton [23,24]. The so–called Thornton
diagram is illustrated in Fig. 13.12.

Fig. 13.12. Thornton Diagram [7]

Depending on substrate temperature and gas pressure four zones of the de-
veloping film structure can be distinguished. Zone I is characterized by a porous
structure caused by shadowing effects of the incoming atoms by the adatoms,
which can be demonstrated by computer simulations. In the transition zone T the
structure is characterized by densely packed fibrous grains developing to colum-
nar grains in zone II. The columnar structure can be dissolved by increasing
surface mobility with increasing temperature (zone III) or by ion bombardment.

13.3.3 Epitaxial Growth

It is well known that the properties of thin films not only depend on their
chemical composition but mainly on their crystallographic structure. This is
true especially for semiconductors, high-Tc-superconductors and ferromagnetic
perovskites. The interesting unique properties of these thin film materials can be
achieved only with high quality monocrystalline films or film systems prepared
by epitaxial growth at sufficient high temperatures on monocrystalline substrates
with matched lattice constants.
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The preparation of epitaxial films with atomic flat surfaces and interfaces
important for the realization of superlattices, tunneling barriers and quantum
wells requires very pure UHV conditions and low deposition rates necessary
for the forming of equilibrium surface states under the condition of a limited
surface mobility. The most important growth mode for the preparation of such
films is the 2-dimensional layer–by–layer growth known as Frank van der Merwe
mechanism. The necessary condition for this growth mode is [25]:

γfv + γfs ≤ γsv , (13.2)

where γfv, γfs and γsv are the surface energies between film and vacuum, film and
substrate and substrate to vacuum. Otherwise 3-dimensional growth of clusters
takes place (Kossel–Stranski mechanism).

Fig. 13.13. Schematic illustration of the principle of the MBE growth method, showing
the change in RHEED information as the growth mode changes from “step-flow” to
2-D nucleation. Steps lie along [100] [9]

Important for the layer–by–layer growth is further the surface roughness,
especially the distance between step edges in relation to the surface mobility
of adatoms [26]. These growth modes can be observed and in situ controlled
by RHEED. Because of the grazing incidence of the focused electron beam the
penetration depth is limited to a thin surface layer. The diffraction pattern pro-
vides therefore informations about the first monolayer, their lattice parameters,
surface reconstruction and disorder effects.

MBE growth is usually characterized by two limiting cases: In one limit, the
surface migration length is much smaller than the surface features so that the
growth occurs by the nucleation of 2-dimensional islands. The other limit is the
step-flow growth, in which the adatoms migrate to the next step edge, where
they will be incorporated (Fig. 13.13).
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The effect of an insufficient surface mobility can be compensated by a pulsed
deposition mode allowing a rearrangement of the adatoms after the deposition
pulse.

Sometimes a post deposition flattening of the film surface can be achieved
by an annealing process, which is demonstrated in Fig. 13.14 for a sputtered
epitaxial La0.8Sr0.2MnO3−δ thin film on SrTiO3.

Fig. 13.14. AFM – scans of a sputtered epitaxial La0.8Sr0.2MnO3−δ single crystal film
before and after oxygen annealing at temperature T

These magnetic perovskites as well as the high-Tc-superconductors are char-
acterized by a highly anisotropic layered lattice structure especially in the Tl-
and Bi-based cuprates [27] and in the (La,Sr)3Mn2O7-system [28] leading to
intrinsic tunneling effects between the superconducting CuO2 planes or the fer-
romagnetic MnO2 planes of the lattices. These intrinsic tunneling structures are
important for Josephson devices in cryoelectronics and spin dependent tunneling
elements in spin electronics.

In these cases MBE is a very powerful deposition technique for the prepara-
tion of artificial tunneling structures by local modification of the lattice structure
demonstrated for example by Bozovic and Eckstein [29].

13.3.4 Reactive Deposition of Compounds

The preparation of chemical compounds by PVD methods requires in general the
film deposition in the presence of a reactive background gas. Because these com-
pounds are usually decomposed during the evaporation or sputtering process,
surface reactions during the film growth are necessary to form the stoichiomet-
ric compounds, for example oxides or nitrides [30]. The reactive sputtering of
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Fig. 13.15. Specific deposition rate RD/UI of SiOx films measured along the I–U
characteristics for medium (◦) and high (∆) oxygen throughputs (substrate-to-target
distance, 5 cm). The measured values of x are indicated at the corresponding U,I points
[31]

elemental targets is complicated by additional effects caused by a strong feed-
back between the surface reactions and the reactive gas pressure and between
the oxygen coverage and the discharge characteristic of the target. The oxy-
gen adsorption on the growing films acts as a strong getter pump reducing the
oxygen partial pressure p at a constant oxygen flow rate D0 in dependence of
the sputtering rate R. On the other hand, the oxygen coverage θ of the target
surface changes the exponential dependence of the discharge current I from the
discharge voltage U . In the case of the Si/O-system the current strongly in-
creases with increasing θ leading to sudden jumps of the deposition parameters
with increasing reactive gas pressure or discharge power, if the power supply
is power or current controlled. Only a voltage controlled power supply allows a
steady change of the deposition parameters including the possibility to achieve
a high degree of film oxidation at a high deposition rate by sputtering a nearly
pure elemental target. The essential features are summarized in Fig. 13.15 [31].

The I(U)–characteristic and the deposition parameters can be derived from a
set of equations describing the equilibrium between the adsorption and desorp-
tion (sputtering) processes of oxygen on the target surface area A and the surface
area F of the growing films with the degree of oxidation ϑ (getter surface):

κ p (1− θ) =
η0
e

θ I

A

ϑ =
κ p F (1− ϑ)

2R

p =
D0

S
− γ ϑ R

S
(13.3)
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R =
ηm
e

I (1− θ)

I = C A

(
U

U ′

)ν + β θ

ηm and η0 are the sputtering yields of Si and oxygen on the target surface. C,
U ′, ν and β are constants describing the special form of the magnetron discharge
characteristic used for the measurements illustrated in Fig. 13.15, γ ≈ kBT =
4.1× 10−18 Pa l and κ = 3.81× 1018 cm−2 s−1 Pa−1 (impact rate of O-atoms at
300 K). S is the pumping speed of the vacuum pump.

13.3.5 Bias Effects

An effective tool for the control of the film structure during the deposition pro-
cess is the bombardment with energetic ions using a bias voltage of the substrate
to accelerate ions from the surrounding plasma of a gas discharge up to ener-
gies of a few eV to about 30 eV, comparable with the sputtering threshold for
impurities and other weakly bonded species on the substrate and film surface.
Therefore the bias effect can be used for substrate cleaning prior to the film de-
position providing an improved adherence of the growing film. Furthermore the
increased surface mobility results in a more perfect crystallographic structure
with increased film density. Selective resputtering effects during the film growth
can reduce the incorporation of weakly bonded species improving the long term
stability of the films.

Exercises

• Thermal evaporation systems with point like sources provide thin films on
planar substrates with a characteristic thickness distribution.

– What is the minimal distance between the evaporation source and a fixed
planar substrate (3 inches in diameter), if the thickness of the deposited
film is requested with a tolerance of 10% over the whole substrate?

• The sputtering yield of an oxygen covered Si-target strongly depends on the
coverage parameter θ, (0 ≤ θ ≤ 1), influencing the discharge characteristic
and the deposition parameters for the deposition of SiO2 thin films.

– Calculate the discharge characteristic and
– estimate the critical current I for a given flow rate D0 = 3 Pa l/s allowing
a working point outside the negative resistance range of the I(U)-curve;
use the set of equations 13.3 with the following parameters: A = 10 cm2 ;
ηm = 0.5 ; η0 = 2.5 ; F = 103 cm2 ; S = 6 l/s ; C = 8 × 10−4 A/cm2 ;
U ′ = 200 V ; ν = 4.5 ; β = 9.5 .

• Bias effects have a strong influence on the composition of thin films sputtered
from alloy or compound targets.
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– Estimate the composition shift between a Au0.5Cu0.5 alloy target and the
growing film as a function of the rate E0/Eth and r/ri in the parameter
range between 1 and 10. r is the impact ratio of target atoms with a sticking
coefficient of 1 and ri the impact rate of Ar-ions of energy E0 on the film
surface.

– Compare the composition shift in the same parameter range using targets
of Pt0.5Rh0.5.
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14.1 Introduction

Spin-transport effects, such as giant magnetoresistance, rely on the fact that
there is a difference in scattering between the spin-up and spin-down electrons in
a ferromagnetic material. The degree to which each electron channel is scattered
depends on the magnetisation direction within the material, and thus on the
local magnetic domain structure. It is therefore of importance when analysing
spin-transport devices to understand their magnetic domain structure, both as
a bulk property and locally. The aim of this chapter is to review a number of
the techniques currently used to image magnetic domain structure in materials.
Although a considerable amount of information about the magnetic properties
and behaviour of a piece of material, for example a thin ferromagnetic film, can be
obtained from bulk magnetometry measurements, it is often extremely useful to
image the magnetic domain structure of the film and thus gain information about
its magnetic properties at a local level. The various magnetic imaging techniques
yet to be described can be extended, by the application of in-situ magnetic fields
which allow not only the magnetic domains but also the magnetisation reversal
process to be followed in real-time.

The techniques detailed in this chapter can be loosely grouped into electron
optical techniques, such as Lorentz microscopy, optical techniques which are
based on the magneto-optical Kerr effect, and scanning probe techniques. There
is an additional technique, the Bitter technique, which does not fall into any of
these categories but can usefully be applied to the study of magnetic domain
structures. The techniques to be described necessarily only comprise a sub-set
of all those available. For a detailed description of the interpretation of domain
images and of the origins and theory of magnetic domains, the reader is referred
to the excellent book by Hubert and Schäfer [1].

14.2 Bitter Pattern Formation

The earliest technique used for imaging magnetic domains was the Bitter tech-
nique, first reported by Bitter in 1932 [2], which allows the domain structure
at the surface of a bulk sample to be imaged with a spatial resolution down to
∼ 0.1 µm. The imaging medium is a ferrofluid, which is a colloidal suspension
of small magnetic particles in a liquid. When the surface of the sample to be
analysed is coated in a thin layer of ferrofluid, the particles are attracted to the

M.J. Thornton and M. Ziese (Eds.): LNP 569, pp. 316–331, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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position of the stray fields above the magnetic domain walls. If the sample is
then viewed using either an optical microscope or a scanning electron micro-
scope (SEM) the position of the decorated domain walls can be seen. It should
be noted that some uncertainty about the exact mechanism by which contrast is
formed in Bitter patterns exists, because of the fact that a number of magnetic
structures that would be expected to show contrast do not in fact do so. It is
therefore usually advisable to use the Bitter technique in conjunction with an-
other magnetic imaging technique such as magneto-optical Kerr microscopy. A
big advantage of the technique is that it can be used to image surfaces without
the need for extensive sample preparation, but the difficulty of making suitable
colloid suspensions means that it is not widely used.

14.3 Electron Microscopy

There are several electron optical techniques that can be used to image magnetic
domains, but only those applicable to the study of thin film materials will be
discussed. These are the transmission electron microscope (TEM) techniques
which include variations on Lorentz microscopy and electron holography, and
scanning electron microscopy with polarisation analysis (SEMPA).

14.3.1 Transmission Electron Microscopy

Lorentz Microscopy

In a TEM a high energy (100–1000 keV) electron beam is incident on a thin
specimen. The interaction of the electrons passing through the specimen results
in magnetic contrast [3] which can be explained by considering the electrons
either as waves or particles. If the electrons are considered as particles, then on
passing through the magnetic induction in the specimen, they are deflected by
the Lorentz force:

F = |e| (ν × B) , (14.1)

where e and ν are the charge and velocity of the electrons, and B is the mag-
netic induction in the specimen. Note that: only components of the magnetic
induction normal to the electron beam give rise to a deflection; the stray fields
above and below the specimen also contribute to the image because Lorentz mi-
croscopy is a transmission technique; and the deflection direction depends on the
magnetisation direction within the domain being imaged and is perpendicular
to it. The magnitude of the deflection angle, β, is given by:

β = (eλBt) /h , (14.2)

where λ is the electron wavelength, t is the specimen thickness, and h is Planck’s
constant. The deflection is proportional to the product of the specimen thick-
ness and magnetisation. Figure 14.1 shows ray diagrams indicating the way in
which the electrons are deflected for a specimen containing two sets of domains
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magnetised in-plane and separated by 180◦ domain walls: the Lorentz deflection
results in each spot in the electron diffraction pattern being split in two. There
are then two methods by which the magnetic domain structure can be imaged:
the Fresnel mode and the Foucault mode – these are discussed in more detail
below. Reviews of Lorentz TEM techniques can be found in [4,5].

 
 

Fig. 14.1. Ray diagrams showing Fresnel and Foucault modes of Lorentz transmission
electron microscopy.

The Fresnel Imaging Mode For the Fresnel imaging mode the objective
lens is defocused so that an out–of–focus image of the specimen is formed (see
Fig. 14.1). Under these conditions the magnetic domain walls are imaged as al-
ternate bright (convergent) and dark (divergent) lines. The bright lines occur
when the domain walls are positioned such that the magnetisation on either side
deflects the electrons towards the wall. If a coherent electron source is used, the
convergent wall images consist of sets of electron diffraction fringes running par-
allel to the wall. Detailed analysis and simulation of the fringe patterns can give
information about the domain wall structure, but this is not easy to interpret.
A Fresnel mode image of a Co thin film can be seen in Fig. 14.2a. Information
about the magnetisation direction within the magnetic domains can also be ob-
tained from the magnetisation ripple visible in Fresnel images of polycrystalline
specimens as a result of small fluctuations in the magnetisation direction. The
ripple is always oriented perpendicular to the magnetisation direction. A typical
ripple image can be seen in Fig. 14.2b.
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(b)
2 µm_(a) 20 nm_

Fig. 14.2. Fresnel images of (a) Co film (note fringes in bright domain wall image)
and (b) MnFe/NiFe bilayer film showing magnetisation ripple contrast.

Foucault Imaging Mode To image magnetic domains using the Foucault
mode, the objective lens is kept in-focus but one of the split spots in the diffrac-
tion pattern is blocked by displacing the objective aperture. The contrast then
results from the magnetisation within the domain, with the deflected electrons
passing through the aperture. By knowing the relative direction of the aper-
ture and image, the direction of magnetisation within the various domains can
be qualitatively determined. To obtain good quality Foucault mode images the
back-focal plane of the objective lens and the objective aperture must be as near
co-planar as possible. A Foucault image of the magnetisation distribution in the
sense layer of a NiFe/Cu/NiFe/MnFe spin-valve can be seen in Fig. 14.3.

Foucault Differential Phase–Contrast Microscopy The differential phase
contrast (DPC) technique was first developed by Chapman et al. [6] and uses
a scanning transmission electron microscope (STEM). The specimen is scanned
with a small electron probe and the signal is detected on a circular detector
split into four quadrants. The Lorentz deflection of the electrons results in the
signal being displaced from the centre of the detector, and the component of
magnetisation in two perpendicular directions can be calculated from the differ-
ence between the signals on opposite quadrants of the detector. Thus the DPC
technique allows quantitative mapping of the magnetisation perpendicular to the
electron beam direction, i.e. in the plane of the specimen. DPC contrast can be
obtained in a conventional TEM by digitally combining series of Foucault images
taken with small increments of electron beam tilt in two orthogonal directions
[7]. Combining these series together again allows the in-plane magnetisation to
be mapped.
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5 µm__
Fig. 14.3. Plan–view Foucault images of the magnetic domains in the sense layer of
a 10 µm×10 µm spin-valve element at two different applied field values. The different
contrast levels in the domains indicate different components of magnetisation in the
vertical direction.

Electron Holography

Electron holography is based on recording an interference pattern from which the
amplitude and phase of an object can be reconstructed [8]. Magnetic thin films
are strong phase objects and the phase shift of the electrons passing through the
specimen is proportional to the magnetic flux enclosed by the electron paths.
Provided that the phase shifts are caused only by the magnetic fields, adjacent
interference fringes run parallel to the magnetisation direction and are separated
by a flux quantum equal to h/e.

Off–Axis Holography A specimen is chosen that does not completely fill the
image plane (for example a small magnetic element or the edge of an extended
film) so that only part of the electron beam passes through the specimen. An
electrostatic biprism is then used to recombine the specimen beam and the refer-
ence beam so that they interfere and form a hologram. This can be digitised and
image processing techniques can be applied to reconstruct a quantitative image
of the magnetic domain structure. An example of a plan-view electron hologram
of a Co/Au/Ni/Al layered film is shown in Fig. 14.4.

Coherent Foucault Mode Imaging This technique, described by Chapman
et al. [10], produces images which are similar to standard electron holography
images. A thin semitransparent aperture containing a small hole is used, of a
thickness that phase shifts electrons passing through the aperture film by π. The
hole in the film is positioned so that half the central beam passes through the
film and half through the hole. This results in interference fringes in the image
as for holography.
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Fig. 14.4. Remanent state electron holographic phase image of two Co/Au/Ni/Al lay-
ered film elements (dark rectangular regions. Contour spacing of 0.064π radians is pro-
portional to in-plane component of induction integrated in incident beam direction. The
Co and Ni layers are coupled antiferromagnetically. (Courtesy of R. Dunin–Borkowski
[9].)

Extending Lorentz Microscopy Techniques

The Lorentz microscopy techniques described above can be made even more
powerful if a magnetic field can be applied in-situ to the specimen so that rather
than just observing a static domain structure, magnetisation reversal processes
can be imaged. This can be done either by using magnetising coils built into
the TEM specimen holder or by tilting the specimen into the vertical lens field
(if a standard objective lens is used). Applying a field using magnetising coils
in the holder removes the potential problem of the specimen experiencing a
vertical component of magnetic field as well as an in-plane component. However,
this technique can result in the need for an extra set of correction coils in the
microscope column to realign the electron beam, which will be deflected by the
applied magnetic field. Further developments are to heat or cool the specimen
(with or without an external applied field) and to pass a current through the
specimen (used to study active spin-valve devices [11]) to observe the effect on
the magnetisation process.

The fact that Lorentz microscopy is a TEM technique means that it is lim-
ited to specimens with t <∼ 100 nm, which can lead to specimen preparation
difficulties in the case of bulk material or thin films grown on bulk substrates. In
addition, the fact that the sample needs to sit in a low magnetic field means that
specially modified TEMs are needed. The spatial resolution of the Lorentz mi-
croscopy techniques described above is of the order of a few nm for the in-focus
techniques and its somewhat worse for the defocused (Fresnel) technique.
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14.3.2 Scanning Electron Microscopy (SEM) Techniques

Two standard SEM techniques exist for magnetic domain imaging on the surface
of bulk specimens. Type I contrast images are obtained when low energy sec-
ondary electrons, sensitive to the stray fields above the specimen surface, are de-
tected. Type II contrast images are obtained when higher energy back-scattered
electrons, sensitive to the magnetisation within the specimen, are detected. A
review of the various SEM techniques can be found in [12]. The spatial reso-
lution of the techniques is limited to slightly better than 1 µm. A more recent
development has been SEM with polarisation analysis (SEMPA), developed by
Unguris et al. at NIST [13], in which the spin-polarisation of the secondary elec-
trons emitted from the sample surface is measured using a Mott detector. A
two-dimensional map of the spin-polarisation reveals the surface magnetisation
distribution for ferro- (or ferri-) magnetic materials. The spatial resolution of this
technique is much higher (of the order of 10 nm), and the depth probed is about
1 nm. A useful feature of this technique is that the magnetisation maps are inde-
pendent of topography, but a topographic map can be collected simultaneously
using standard SEM imaging techniques.

14.4 Scanning Force Microscopy

The atomic force microscope (AFM) was pioneered by Binnig, Quate and Ger-
ber in 1986 [14] and involves scanning a fine tip on a flexible cantilever across a
sample using piezoelectric scanners, as shown in Fig. 14.5. There is a force be-
tween the sample and the tip which can deflect the tip, and if the tip deflection
can be measured at each point in the scan then a force image can be produced.
Several techniques have been developed for detecting the cantilever deflection,
for example optical interference between the tip and an optical fibre. There are
a number of different interactions that can be detected to produce force images,
namely: electrostatic (range, d < 100 nm), van der Waals (0.2 < d < 10 nm),
magnetostatic (d < 1 µm).

14.4.1 Magnetic Force Microscopy

The magnetic force microscope (MFM) is a further development of the AFM,
first reported in 1987 [15], in which the tip is either made of a magnetic material,
or is coated in a magnetic layer. If the tip is then scanned over a magnetic
sample, the tip can interact with the stray fields above the sample and an image
of these stray fields, and thus of the magnetic structure of the sample, can be
produced. The spatial resolution of the MFM is of the order of 10–100 nm,
which is considerably worse than standard AFM (0.02–0.1 nm), but the force
resolution (sensitivity) of an MFM is considerably higher (10−13 N/m compared
to 10−5 N/m for AFM)

In order to understand the basic principles of the tip/sample interaction in
MFM, first consider the field H(r) from the sample to be the result of a point
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dipole, m1, and consider the tip likewise to be modelled as a point dipole, m2.
The force between the tip and the sample is then given by:

F = ∇
[
3 (m1 · ru) (m2 · ru) − (m1 · m2)

r3

]
, (14.3)

where ru is the unit vector along r (the tip/sample separation). The precise
geometry of the tip, the cantilever and the sample then allows the various com-
ponents of the force and also its gradient terms to be detected. In practice the
forces must be integrated over the extended tip/sample volume and this repre-
sents a major challenge for MFM.

The fact that the MFM is a scanning system with the force at each point being
collected sequentially, and that the tip-sample interaction only generates weak
forces and force gradients, means that the MFM instrumentation requirements
are very stringent. Thermal noise limits detection of the force gradients and
stable detection conditions are needed to enable long scan times (> 30 min).
Another complication is the need to have a micro-positioning system with sub-
nm resolution and a wide range (50 µm or more). This is necessary because
domain walls can show detail on the nm scale but domains extend over several
µm.

MFM contrast depends in a complex way on stray fields and sample topog-
raphy and so it is almost essential to use an additional imaging mode based
on another interaction to acquire topographic data for in-situ correlation with
the magnetic data. In addition, since MFM contrast can be complicated by the
tip-sample interaction and potential artefacts, it is useful to have an alternative
domain imaging technique to correlate in-situ with MFM (e.g. Kerr microscopy
– see below). One of the main uses of MFM is to image written bits on magnetic
storage media such as hard disks, as seen in Fig. 14.6. For this purpose the fact
that the sequential collection of the data makes MFM a relatively slow technique
is not a problem, and the relatively simple magnetic structure precludes the need
for comparison with data from another technique.

In practice MFM resolution is ultimately limited by the specific tip/sample
system, and different sample materials require specific tip/cantilever coatings,
resulting in the need for a range of tips for specific applications (e.g. low stray
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Fig. 14.5. Schematic diagram of a scanning force microscope.
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10 µm

Fig. 14.6. 20 × 20 micron force gradient im-
age from a 2 µm bit length ‘1100’ pattern on
a commercial CoPt hard disk imaged by a
50 nm CoCr film on a Si nanoprobe cantilever
scanned at 100 nm tip flyheight. Imaged in
zero field. (Courtesy of Prof. S. Hoon, Manch-
ester Metropolitan University).

field – soft materials) which can be fabricated in a reproducible manner. Care
must be taken when choosing the tip material to ensure that the tip-sample
interaction is not so strong that the magnetic domain structure of the sample is
influenced by the tip i.e. the tip should be magnetically softer than the sample
in most cases. Points that need to be considered are the micromagnetic state of
the tip, the spatial frequencies of the magnetic domain structure in the sample,
and the nucleation/pinning fields of the tip and sample. If quantitative image
interpretation is required, the tips must be well characterised and calibrated and
this can be carried out using magnetometry, DPC imaging, or in situ calibra-
tion. Micromagnetic modelling of the tip-specimen interaction is also necessary.
Reviews of the MFM technique and some of its applications can be found in [16]
and [17].

Extending MFM Studies

Imaging in an external applied field is possible, but the micromagnetic state
of the tip must be unperturbed by external applied field, or must change in a
well-defined way to allow image interpretation. A recent application of MFM
has been to use a commercial magnetoresistive recording head as the sensor in a
scanning probe microscope [18]. This technique has been used very successfully
to image the stray fields above written bits in magnetic recording media.

14.4.2 Atomic Force Microscopy

Although the AFM cannot be used for the imaging of magnetic domain struc-
tures, a brief description of some of the AFM techniques and their applications
are included here because they are frequently applied to magnetic materials. In
the non-contact mode of atomic force microscopy a tip is scanned over the
sample at a height of 1–50 nm above the surface, allowing sample topography
to be measured. At this separation, there is an attractive force between tip and
sample (long-range van der Waals forces). The low total force between the tip
and the sample results in a small signal, and the technique reduces sample con-
tamination. The instrument is usually used in one of two modes: constant force,
in which the height of the tip above the sample is adjusted to keep a constant



14 Magnetic Imaging 325

cantilever deflection (the usual mode of operation), or constant height, which is
used when measuring small changes in force. In the contact-mode the sample
and tip are in contact, resulting in a repulsive force between the tip and the
sample. The cantilever bends to follow the surface topography of the sample.
The tip can be in constant contact with the sample surface, or the sample can
be scanned in tapping mode, which is less likely to damage the sample surface
and is good for imaging large scans with large variations in sample topography.

The AFM can also be used to measure surface friction – so-called friction
force microscopy. Differences in the twisting of the cantilever at different posi-
tions across the specimen surface, as a result of friction at the sample surface
produce image contrast. A further use of a scanning probe microscope is nano-
metric cartography [19] in which an atomic force microscope/scanning tunnelling
microscope set-up is used to map the perpendicular tunnelling current in spin-
tunnel junctions.

14.5 Polarised Light Microscopy

All polarised light techniques used for imaging magnetic domain structures rely
on the fact that a piece of magnetic material rotates the plane of polarisation of
linearly polarised light – the magneto-optical effect. If reflected light is used the
effect is referred to as the magneto-optical Kerr effect [20,21] (MOKE), and this
is the technique most widely used for domain imaging, with a spatial resolution
of the order of 0.1 µm and a sampling depth of the order of 10 nm. If transmitted
light is used the effect is referred to as the Faraday effect. This is not as widely
used as the Kerr effect and will not be discussed further here. Both techniques
image the magnetisation distribution in the sample rather than stray fields above
the surface, and the images that are produced are thus directly comparable with
Foucault mode Lorentz microscopy images.

14.5.1 Magneto–Optical Kerr Effect Microscopy

The rotation of the polarisation that is induced by the magneto-optical Kerr
effect is usually very small (� 1◦) although in some materials (e.g. Si-Fe [22]) the
effect can be much larger. The small signal for most materials meant that Kerr
effect imaging only really became widely used once digital imaging techniques
were available which enabled background subtraction and contrast enhancement
to be achieved. There are three configurations that can be considered, and which
are illustrated in Fig. 14.7, namely:

1. The longitudinal Kerr effect, in which the MOKE signal is a maximum for
incident angle � 60◦, which is used for study of in-plane magnetisation. See
Fig. 14.8 for an example of an application of longitudinal Kerr microscopy.

2. The polar Kerr effect for which the signal is a maximum for normal incidence,
used for the study of samples with a perpendicular magnetisation.

3. The transverse effect, which results in a change in reflected amplitude depend-
ing upon the magnetisation conditions of the sample.
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Fig. 14.7. Schematic diagrams illustrating the various MOKE configurations.

Fig. 14.8. Longitudinal Kerr images of domains in a (100) oriented Si-Fe crystal. In
the left image the sensitivity axis is horizontal and on the right it is vertical. (Courtesy
of Dr. R. Schäfer, University of Dresden.)

The longitudinal and polar Kerr effects are usually modelled as inducing a
Kerr component on reflection that is perpendicular to the incident polarisation
direction. Since the Kerr component and the normal component are not usually
in phase, the reflected light is elliptically polarised. Two parameters can then be
measured, namely the Kerr rotation angle, θK, and the ellipticity, ηK.

14.5.2 New Developments in Kerr Microscopy

Scanning Laser Microscope

In a scanning laser microscope (SLM), a diffraction-limited laser spot is scanned
over the sample. The reflected light is detected, and the angle of the polarisation
relative to the incident beam is detected by analysing the signal incident on
two sets of quadrant photodiodes. The image is then built up from the pixels
collected at each point using a camera or a CCD array. The advantages of this
configuration are that the spatial resolution is improved relative to a parallel
detection system, there is a large field of view (up to ∼ 25 mm × 25 mm), there
are many operating modes that can be used depending on the way in which the
signals from the various quadrants are combined, and the images can easily be
subjected to digital processing [23,24]. If used in the confocal mode, the depth
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discrimination becomes extremely good, allowing information to be obtained as
a function of depth into the sample. An SLM image of bits written in a CoPt
MO material is shown in Fig. 14.9.

10 µm

Fig. 14.9. SLM image, recorded using a 100 µm diameter confocal pinhole of 100 µm
× 50 µm rectangular bits written into a Pt/Co multilayer sample (used for MO storage
applications). The bit edges are clearly not perfect , with ‘worm’ like domains visible,
which are a result of a relatively low coercivity of the Pt/Co layer. (Courtesy of Prof.
C. D. Wright, University of Exeter.)

As well as being capable of imaging static domains, magnetic fields can be
applied that enable real-time imaging of magnetisation reversals to be recorded,
although the fact that the information is recorded serially does limit the time-
resolution. Two further applications of the SLM have been: for obtaining local
hysteresis loops from small regions of a sample, by keeping the laser spot fixed
and following the change in Kerr rotation signal with applied field; and for
mapping spatial variations in a magnetic property, for example permeability
[23].

In order to improve the time-resolution of dynamic scanning Kerr microscopy,
a number of groups have developed systems capable of nano- or pico-second
time resolution, with a spatial resolution down to about 100 nm. This has been
achieved either by stroboscopic imaging [25] in which a magnetic material is
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repeatedly cycled around a hysteresis loop and a stroboscopic technique (such
as a fast pulsed laser) is used to record variations in magnetic domain structure
with time at a fixed spatial position, or by scanning the spot over the sample,
to build up an image that is fixed in time (relative to the hysteresis cycle) over
a larger area. This technique has been used to great advantage to study rapid
processes such as the magnetisation dynamics of write-heads, for which the whole
magnetisation process occurs over a time-scale of 10–20 ns.

Kerr Effect Near–Field Optical Microscope

Near-field optical microscopy gets around the problem of the diffraction limit
by passing the light through a sub-microscopic aperture which is scanned over
the sample. This results in an enhanced resolution of the order of 10–50 times
greater than conventional optical imaging [26]. The technique can be used ei-
ther in transmission or in reflection although, as with all optical techniques, the
reflection technique is more widely applicable but more difficult [27]. However
near-field optical microscopy is still under development and relatively few results
have been published so far.

14.5.3 Polarised Light Microscopy: Advantages and Disadvantages

There are a number of advantages to the MOKE microscopy techniques de-
scribed above, such as the fact that the Kerr contrast is directly related to the
magnetisation in the sample, rather than to the stay fields above the sample
surface. In addition, no specific sample preparation is required and the shape
and size of the sample are not constrained. The technique can be made quanti-
tative, although this is not necessarily easy to achieve, and dynamic effects such
as magnetisation reversal processes can be observed, in addition to observing
the effects of parameters such as temperature and applied stress.

Against this, there are a number of disadvantages that should be taken into
account. Firstly, although no specific sample preparation is required, it is neces-
sary for the sample to have a flat, reflective surface – surface irregularities can
severely degrade the image quality. In addition, the spatial resolution is limited
(except for near-field techniques) to about 0.15 µm.

14.6 Summary

In this chapter I have tried to present a brief overview of a number of the tech-
niques that are used for magnetic domain imaging. The techniques all have their
own particular merits and difficulties and it is often best to use a number of
different techniques to analyse the same sample and thus gain the maximum in-
formation. For example, combining MOKE or Lorentz microscopy (which image
the magnetisation within the sample) with MFM (which images the stray fields
above the sample surface). I have not touched at all on the domain imaging
techniques based on X-rays or neutrons and for this I would refer the reader to
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section 2.7 in Chapter I of Hubert and Schäfer [1]. These techniques differ from
those discussed in this chapter in that they rely on access to synchrotrons and
nuclear reactors and are therefore not ‘lab-based’ techniques.
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14.7 Problems

1. Electrons with energy 100 keV are incident normally on a Co foil of thickness
100 nm in an electron microscope. Calculate the angle through which the
electrons can be deflected after passing through the specimen.

2. A spin-valve of width 10 µm has the following structure: Ta/NiFe/Cu/Co/-
NiFe/MnNi (5/8/3/2/6/25 nm) where the numbers in brackets indicate the
layer thicknesses in nm. The resistivities of the layers are: Cu – 2.7 µΩcm,
NiFe – 20.0 µΩcm, Co – 7 µΩcm, Ta – 175 µΩcm and MnNi – 180 µΩcm. Use
Ampere’s law to estimate the field induced by the current in the NiFe sense
layer for a 6 mA current.

3. (a) The saturation resistance of a spin-valve structure is 51.75 Ω and the
resistance in the antiparallel configuration is 53.60 Ω. Calculate the GMR
ratio of the system, stating the formula that you have used.

(b) If the resistance of the system varies as cos(θ), where θ is the angle be-
tween the magnetisation directions in the pinned and sense layers, calculate
the resistance of the spin valve for θ = π/3 and for θ = π/2.

14.8 Solutions

Answer to 1:

100 keV = 1
2mv2 v2 = (2 × 100 × 103 × 1.6 × 109)/9.11 × 10−31

v = 1.874 × 108 ms−1

Maximum force ⊥ to v is F = −|e|vB = ma
|F | = e v µ0 M (M is magnetisation)

⇒ |Fmax| = 1.6 × 10−19 × 1.874 × 108 × 4π × 10−7 × 1.43 × 106

= 5.39 × 10−11 N

Time taken for electrons to travel through foil = 100 × 10−9/1.874 × 108 s

Horizontal displacement = 1
2at2 = 1

2Ft2/m = 8.44 × 10−12 m
tan(θ) (θ in radians) = 8.44 × 10−12/100 × 10−9 = 8.44 × 10−5 rad
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Answer to 2:

We assume that approximately 75% of the current contributes to the induced
field, HI , based on the resistivity and thickness of the layers that comprise the
SV. We also assume that HI will only affect the sense layer magnetisation. Then:

HI = 0.75I(4π × 10−3)/2h

where I is the sensing current, 4π × 10−3 is the conversion factor from SI to
CGS and h is the height of the SV element. For a 6 mA current HI has a value
of 2.8 Oe.
Note: This is a very oversimplified version of the truth, but it agreed very well
with the experimental determined value for a spin-valve of this structure of
HI = 2.5 Oe.
Think about configurations of applied field direction, induced field direction
and easy axis direction and how these parameters are related, and for which
configurations the induced field will have an effect.

Answer to 3:

Assume that the thickness of the conducting layers corresponds only to the
pinned + spacer + sense layers. The height of the spin-valve is the term used
for its width.
⇒ Area = 10 × 10−6 × (8 + 3 + 2 + 6) × 10−9 m2

Current densities are: 0.3 mA - 1.6 × 105 A cm−2, 9.0 mA - 4.7 × 106 A cm−2

References
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CNRS-ULP-ECPM, 23, rue du Loess, 67037 Strasbourg Cedex, France

2 VEECO instruments, 3100 Laurelview Court, Fremont, Ca 94538, USA
3 LPM, Université Henri Poincaré BP 239, 54506 Vandoeuvre lès Nancy, France

Abstract. Advances in materials growth and characterization have, over the past ten
years, made possible the investigation of basic physical processes in new “artificial”
materials. These materials are artificial in the sense that the geometry and composition
are controlled during growth on micrometer and nanometer length scales. This results
in macroscopic behaviour that can be dramatically different from that of a material
in its bulk form. Magnetic order and reversal processes, which have been extensively
studied since the turn of the century, are now being re-examined for nanostructured
materials.

The results presented here for the different magnetization configurations observed
in submicron magnetic dots, rings and wires exemplify current state–of–the–art growth,
lithography and imaging technologies. Using these geometries the potential for precise
control of micromagnetic behaviour in patterned materials by control of shape and size
is demonstrated. The boundaries between the different ground state configurations
have been established experimentally as a function of the lateral width and height.
Furthermore, metastable configurations can be induced following specific magnetization
histories.

15.1 Introduction

During the last decade, much attention has been devoted to artificial layered
magnetic materials which revealed a large variety of fascinating new phenomena
such as the oscillatory interlayer exchange coupling in magnetic/non-magnetic
multilayers, [1,2,3,4,5,6], surface and interface anisotropy [7,8,9], the giant mag-
netoresistance effect[1,5,10,11], quantum size effect in electronic properties [6,12]
as well as in magneto-optical properties [12,13] of magnetic and metallic ultra-
thin films and related layered structures [14]. Those fundamental developments
made such systems also of great interest from a technological point of view in
the area of communication devices and storage media. Stimulated by this physics
resulting from the layering and reduction of the system size in the vertical direc-
tion, a natural extension was the venture into a further reduction of the lateral
sizes and quite general into low dimensional systems of nanometer extend [15].
Great interest has been developed for these mesoscopic magnetic structures. The
term “mesoscopic” is used here to emphasize that the material dimensions are
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comparable to fundamental length scales associated with the transport and mag-
netic properties such as the conduction electron mean free path, the exchange
lengths or the domain wall width.

The control of the unique micromagnetic properties at nanometer length-
scales through a variation of the system dimensions made these low dimensional
magnetic structures interesting not only from a fundamental, but also from a
technological point of view. Examples for applications of high quality artificial
low dimensional materials are well known for some time from the world of semi-
conductors, such as quantum wires and quantum dots [16,17,18]. In contrast a
variety of tantalizing new possibilities for devices, structured from magnetic low
dimensional systems have only been reported in the literature over the last years.
Research and development of new magnetic structures has largely profited from
these potential applications, in particular in high density data storage materials
[19,20,21].

For the study of the static and dynamic properties of very small particles,
say a few 10 nm to a few 100 nm, two approaches are possible. The first one
consists in performing an ensemble average measurement on an assembly of
many presumably identical (monodisperse, likely shaped) particles [22,23,24].
Due to the small particle volume, however, magnetization measurements are
then limited to the study of a large number (millions) of small particles. The
disadvantage of such an ensemble average is that it masks the intrinsic magnetic
properties of the individual particle by the inevitable distribution of size or
shape.

This can be overcome by state-of-the-art deep UV [25], X-ray [26,27] and
e-beam ([28], see also Chap. 16) lithography techniques, making it possible to
study one single particle at the time with a very local technique such as local
near field probes [29,30], electrical measurements [31,32,33,34] or SQUID loop
surrounding the particle to be studied [35,36,37]

Studies of the magnetic properties of individual particles have become pos-
sible with the development of the Magnetic Force microscopy (MFM) scanning
probe technique. MFM has proven to be a well suited tool for imaging the stray
fields of individual laterally confined elements [29,38,39,40] for which studies can
be performed for example in the as-grown state, after applying different magnetic
field histories or even as a function of an applied field following the hysteresis
loop.

In this chapter, a comprehensive overview is presented on the current state
of the art concerning the correlation between micromagnetic configurations and
the shape and size of magnetic mesoscopic structures. Several examples from lit-
erature and our own work will be given. The various types of systems considered
are submicronic dot, ring and wire structures, sufficiently far from each other,
so that any interactions can be neglected. The effect of dipolar interaction in
closely packed arrays is an interesting subject area on its own and goes beyond
the scope of the presentation.

The chapter is organized as follows: In Sect. 15.2 several fabrication tech-
niques for nanomagnets are described, while Sect. 15.3 gives a summary on
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the magnetic force microscopy imaging technique used. Section 15.4 summarizes
the numerical micromagnetic calculations used to complement the MFM imag-
ing. Section 15.5 gives a summary on the domain formation in thin films with
particular emphasis on stripe domains developing in films with perpendicular
magnetic anisotropy. Section 15.6 discusses the micromagnetic configurations in
submicronic dots, in particular the transition from a vortex to a single domain
state, driven by the balance between the exchange energy and demagnetization
shape energies. In Sect. 15.7, similar aspects are described for circular rings, with
more emphasis on stable and metastable magnetic structures. The last part of
this chapter deals with epitaxial flat Co wires for two cases of orientation of a
strong in-plane uniaxial anisotropy. The transformation between the stripe do-
mains and single domain structures is discussed in one case, whereas for another
head-to-head domain walls separate regions of uniform magnetization.

15.2 Fabrication Methods of Nanomagnets

Advanced lithographic techniques are currently employed to make regular peri-
odic arrays of submicronic magnetic wires, dots and pillars [28]. The standard
fabrication process used by the semiconductor industry involves electron beam
lithography for the formation of designed patterns on a set of masks followed by
optical lithography for the reproduction of the mask patterns at a high through-
put level. A typical lithographic process consists of three successive steps: (1)
coating a substrate with irradiation sensitive polymer layer resist, (2) expos-
ing the resist with light, electron or ion beams depending on the lithography of
choice, (3) developing the resist image with a suitable chemical. Exposures can
be done either by scanning a focused beam pixel by pixel from a designed pattern
(electron-beam or ion-beam lithography techniques), or exposing through a mask
for parallel replication. We will discuss here only the lithography techniques used
for making the constrained structures presented in this chapter.

15.2.1 E-beam Lithography

Electron beam (e-beam) lithography is used for primary patterning directly from
a computer-designed pattern [28]. It is the essential basis for nanofabrication in
addition to mask and prototype device manufacturing. This technique is how-
ever not suitable for mass production because of the limited writing speed. The
resolution of e-beam lithography depends on the beam size and several factors
related to the electron-solid interaction. Scanning electron beam lithography has
demonstrated 10 nm resolution by using low energy electrons (∼ 1 keV) to re-
duce the proximity effects. E-beam lithography has been found ideal for use in a
research environment and has allowed us to study well defined wires as discussed
in Sect. 15.8.2. These wires with lateral widths down to 100 nm, see Fig. 15.1d,
were patterned from epitaxial cobalt films [41]. Furthermore, this technique was
used to pattern circular rings, see Fig. 15.1c, discussed in Sect. 15.7.
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Fig. 15.1. High resolution scanning electron microscopy images of (a) an array of Co
dots of ∼ 1 µm period and ∼ 0.5 µm basal plane, patterned by X-ray lithography from a
continuous epitaxial Co film, (b) electrodeposited Co nanowires of 35 nm diameter, af-
ter dissolution of the polycarbonate membrane in dichloromethane, (c) polycrystalline
Co rings of 500 nm outer diameter, fabricated by electron beam lithography and lift-
off and (d) 100 nm wide flat Co wires, patterned by electron beam lithography from
a continuous epitaxial Co(1010) film. E-beam lithography allows to computer design
the wires along any spatial direction. For instance, wires can be patterned along the
anisotropy axis or perpendicular to the anisotropy axis.

15.2.2 X-ray Lithography

X-ray lithography is part of the next generation lithography, which has already
demonstrated 20 nm resolution in a contact printing mode and can have a high
throughput [26,27]. However, its mask technology using e-beam lithography and
the exposure systems are currently rather complex and expensive. A typical X-
ray mask consists of a 2 µm thick membrane of silicon carbide and absorber
features of heavy metals such as Au, W, or Ta. Exposures can be done at a
mask-to-wafer distance of ∼ 10 µm with synchrotron radiation or a laser-induced
plasma source. The resolution of proximity X-ray lithography is defined by the
Fresnel diffraction and the diffusion of photoelectrons in the resist. High resolu-
tion and high aspect ratio features can thus be obtained. Figure 15.1a shows an
array of 1 µm-period and 0.5 µm wide epitaxial dots made on a total surface of
5 mm by 5 mm. The patterning process begins with the realisation of holes in a
high sensitivity resist using X-ray lithography followed by an aluminium lift-off
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process [42]. The edges are straight with nearly vertical profile and the dots sur-
face retain the smoothness already observed on the as-grown films. This quality
of patterning is kept up to 150 nm thick cobalt films. The magnetic properties
of these dots are discussed in Sect. 15.6.

15.2.3 Electrodeposition Into Porous Templates

As an alternative to these advanced lithographic techniques, electrochemical de-
position of ferromagnetic metals into porous templates is performed to produce
arrays of nanopillars (or nanowires) [43] of extremely small diameters, the most
commonly used templates being polycarbonate membranes [44]. Although, at
present, nanowires cannot be grown at prespecified locations in polycarbonate
templates, this method has the attractive features of simplicity in operation
and high cost-effectiveness. The membranes are first irradiated with Ar+ ions
accelerated at 120 MeV and subsequently etched chemically. The irradiation is
performed at normal beam incidence with respect to the plane of the polycarbon-
ate films and the dispersion in the direction of the ion tracks is usually less than
10 degrees. The etching conditions are adapted to produce regular cylindrical
pores of varying diameters. The growth is generally performed by electrodeposi-
tion at room temperature from a sulfate bath containing the ions of the material
which is suitable (Co2+ in order to make arrays of Co nanowires as shown in
Fig. 15.1b). The porosity of the membranes allows defining the average spac-
ing between the pillars, making possible study of interacting or non interacting
particles. The Co nanowires discussed in Sect. 15.8.3 were shown to be made
of large crystal grains, extending transversally across the full wire diameter and
longitudinally over several micrometers. Second and more important, electrode-
posited Co proved to adopt a rather good quality hexagonal compact structure
with a preferential texture along the wire axis for the 35 nm Co wires [45].

15.3 Magnetic Force Microscopy

Most of the images reported in this chapter have been taken using the very
popular and widely used technique of Magnetic Force Microscopy. We used the
commercial AFM/MFM scanning probe microscope from VEECO-Digital In-
struments Dimension 3100, equipped with standard CoCr-coated tips magne-
tized along the tip axis, which applies the powerful TappingMode/LiftModeTM

interleave technique developed by Digital Instruments (see Fig. 15.2b) [46]. This
particular technique allows disentangling the topographical and magnetic data
and to collect both kinds of information during the same image acquisition, hence
making easy the correlation of the magnetic data with topographical features.

Magnetic Force Microscopy is a development of the technologies of Atomic
Force Microscopy and Scanning Tunneling Microscopy [47] in order to image
magnetization patterns with high resolution and minimal sample preparation.
The technique relies on measuring the interaction of the stray magnetic field
emerging from the sample with the magnetic moment of a sharp magnetic tip
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Fig. 15.2. (a) Tapping mode AFM operates by scanning a tip attached to the end
of an oscillating cantilever across the sample surface. (b) Using a tip coated with a
magnetic material, the system can be used in the lift mode, which allows to distinguish
the long-range magnetic and the short-range topographic information during the same
image acquisition.

attached to a flexible cantilever which is placed close to the surface (typically
0.5–500 nm).

The interaction is inferred by measuring the cantilever deflection using ei-
ther the tunnel effect [48], optical interferometry [49] or optical deflection (see
Fig. 15.2a). The image is formed by scanning the tip laterally with respect to
the sample and recording the interaction strength as a function of position.

We introduce shortly the principle of this instrument, see also Chap. 14.

15.3.1 Principle of the Magnetic Force Microscope

Frequency Shift: A variety of different techniques can be used to probe the
interaction between tip and sample. From those the non-contact ac-detection
mode MFM (Fig. 15.2b) enjoys wide popularity in the literature. It operates by
monitoring the vertical dynamics of the cantilever as it is scanned over the mag-
netised surface. A piezoelectric bimorph is used to oscillate the flexible cantilever
that supports the probing tip transversely. This is generally done by driving the
cantilever at a fixed frequency slightly higher than its mechanical resonance and
observing changes in the cantilever deflection amplitude.

The mechanical resonance frequency of the cantilever is determined not only
by its indigenous spring constant but also by the vertical component of any force
gradient which it experiences since any such force which varies with displacement
appears in the cantilever equation of motion as an additional effective spring
[46]. This, in turn, shifts the resonance frequency [49] and hence changes the
amplitude of the tip oscillation.
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Force gradients can arise from several sources; magnetic force between tip
and sample magnetizations, interatomic forces between tip and surface atoms
and other forces such as electrostatic interaction [50]. The component of the
force that actually contributes to the cantilever deflection is Fmag = n · F ,
where n is a unit vector normal to the cantilever, and the component of the
force gradient that modifies the cantilever spring constant is the one normal to
the cantilever. Therefore, such an ac detection technique yields a signal related
to the force derivative F ′

n = n · ∇(n · F ).

Separation of Topography and Magnetic Contrast: The MFM image is
constructed by extracting the magnetic force gradient component and suppress-
ing the interatomic force gradients. This suppression can be done in several
ways. The most straightforward is to operate in the large separation limit of
the interatomic potential where the interatomic force is attractive and the third
derivative of the potential with respect to tip height is small: thus the cantilever
resonant frequency is insensitive to topographical changes as the tip is scanned.

In the TappingMode/LiftModeTM interleave technique developed by Digital
Instruments, a complete image acquisition is achieved by performing, at evenly
spaced positions along the so-called slow translation axis, a set of two successive
line scans along the fast translation axis (perpendicular to the slow translation
axis). During the first of these two scans, the tip flies very near to the sample
surface (10 nm at most). The tip-sample separation is constantly adjusted by a
feedback loop so as to maintain constant the amplitude of the oscillation of the
tip, the latter being mainly subjected to short range Van der Waals forces. This
allows to generate a contour of constant force gradient that defines the sample
topography to be stored. For the second of the two scans, the tip-sample distance
is increased to some value (typically ranging from 50 to 200 nm in the case of
the reported experiments) chosen so that the lifted tip be then predominantly
subjected to the long range magnetic forces due to dipolar interactions between
the tip magnetization and the stray field emanating from the specimen. The
feedback control is turned off and the tip is driven along a trajectory that mimics
precisely the sample topography measured during the first scan. The recorded
signal then consists of the variation of the magnetic force gradient at constant
height above the specimen surface, yielding a contrast mapping of the magnetic
stray field above the sample.

The disadvantage of a too large tip-sample distance for the second (magnetic)
scan is that spatial frequencies in a magnetic field pattern fall off rapidly with
distance from the magnetization distribution. As a result the resolution decreases
with which the magnetization distribution can be imaged. A compromise has
therefore to be found for the correct tip-sample distance in each scan, to obtain
good resolution of the magnetic contrast (reduce distance) and at the same time
reduce any contributions from the interatomic interactions (increase distance).
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15.3.2 Modelling of the MFM Response

Because of the proportionality of the recorded signal to the magnetic force deriva-
tive, the technique employed provides a very good signal to noise ratio. However,
it concomitantly makes the recovering of the local magnetic configuration within
the sample not straightforward. Indeed, modeling is most often required to en-
sure a correct interpretation of the observed MFM images [51,52,53]. To evaluate
theoretically the magnetic force exerted on the tip and its gradient, various lev-
els of approximation are possible, depending on the degree of complexity of the
model used to describe the shape and magnetization state of both the tip and
the sample and their interaction. One simple but very instructive approximation
that we will use in the following is to assume that the probing tip consists of a
point dipole with effective magnetic moment m. In this case, the magnetic force
acting on the tip follows the equation

Fmag = ∇(m · h) , (15.1)

where h is the stray field originating from the sample. If, as is usual and was
always the case for the reported MFM experiments, the cantilever is vibrated
along the z axis perpendicular to the x− y plane in which lies the flat substrate
supporting the sample and if the effective magnetic moment of the tip is oriented
along the z direction (mx = my = 0, mz = ±m ), the magnetic force derivative
to which the MFM response is proportional will be then:

F ′
n = ±m

∂2hz

∂z2
. (15.2)

Thus, the MFM response is simply proportional to the second derivative with
respect to the z coordinate of the vertical component of the stray field produced
by the sample at the tip location. It should, however, be emphasized that this
approach is only valid under the assumption that the stray field from the sample
is not sufficient to alter the magnetization in the tip and that, conversely, the
stray field from the tip has no significant effect on the magnetization distribution
within the sample.

15.4 Micromagnetic Calculations

Numerical micromagnetic modeling is a vital tool to predict and understand the
various magnetic configurations, which are strongly dependent on the material
parameters but more importantly on the shape of the nanostructures. These
calculations will then have to be compared to the results obtained from direct
imaging. For this purpose we have developed a 3D micromagnetic code which
has been used to obtain magnetization vector plots presented later on. The
confidence of this code has been checked by treating several benchmark problems
[54] such as the magnetization configuration in small cubic particles (Problem
3) as well as the reversal dynamics of a thin permalloy platelet (Problem 4)
published by McMichael [54].
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The magnetization configurations presented in this chapter were obtained
by minimizing the total free energy of the system, which includes contributions
from the magnetocrystalline anisotropy, the demagnetization, the exchange and
the Zeeman energy [39]. For more details on the micromagnetic theory, refer to
the chapter by R. Skomski, Chap. 10 in this book. The minimization is carried
out with respect to M = Msm under the constraint |m| = 1.0. Furthermore the
magnetization at the element surfaces satisfies the stationary boundary condition
∂m/∂n = 0, where n is the unit vector normal to surface pointing outwards.
Starting from a given configuration, the system proceeds towards a local mini-
mum by following the states according to the Landau–Lifshitz–Gilbert equation
(LLG) [55,56]. The real system is discretized into Nx×Ny×Nz cubic cells of con-
stant magnetization. The cell size is chosen to be smaller than the characteristic
magnetic lengths. This cell size is 2.5 nm in the case of Co as a material used for
many studies presented in this chapter. The characteristic magnetic lengths using
the material parameters of Co, saturation magnetization Ms = 1400 emu/cm3,
exchange constant Aex = 1.4×10−6 erg/cm, magnetocrystalline anisotropy con-
stant Ku = 5 × 106 erg/cm3, are: exchange length lex =

√
Aex/(2πM2

s ) ∼
3.37 nm and Bloch wall width parameter ∆0 =

√
Aex/Ku ∼ 5.29 nm. The mag-

netostatic energy is evaluated in the approximation of uniform magnetized cubic
cells and the demagnetization field is substituted by its value averaged over the
cell [57]. The fast Fourier method is implemented for the stray field evaluation.
The numerical stability of the time integration of the LLG equation is assured by
the use of an implicit forward difference method for the time discretization [58].
A constant time step of dt = 0.1 ps has been used and the damping parameter
was set to α = 1.0 since we are only interested in the static stable state. The
convergence is reached when the residual torque |m × heff | < 10−6.

15.5 Domain Formation in Thin Films

15.5.1 Origin of Domains

Exchange due to Pauli exclusion tends to align magnetic moments parallel to
each other in a ferromagnet whereas interaction with crystalline fields via spin
orbit coupling leads to a preferential orientation of the magnetization along par-
ticular directions. This behaviour is often described in terms of effective exchange
and anisotropy fields acting on a position dependent magnetization vector, see
also Chap. 10.

The concept of domains was originally introduced by Weiss [59] to explain
why ferromagnetic materials can have zero average magnetization while still
having a non-zero local magnetization. The essential idea is that alternating
the direction of the magnetization with respect to a surface can minimize the
energy in the static magnetic fields associated with the magnetization in a finite
material [39].

The transition from one direction of magnetization to another between adja-
cent domains involves a rotation of the magnetization vector. The rotation occurs
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over a finite distance whose width is determined by a competition between ex-
change and anisotropy. The resulting magnetic structure is called a domain wall.
When a magnetic field is applied, domains with the magnetization oriented along
the applied field direction grow by displacement of the walls at the expense of
domains with the magnetization oriented opposite to the field direction.

The deviations of the magnetization from uniform inside the domain wall
incorporates exchange, anisotropy and dipolar energies, so that the formation
of the wall is energetically costly. The ground state of an infinite bulk material
therefore would be the homogeneously magnetized single domain state. However,
real materials have finite boundaries, which involve at some point or another a
discontinuity in the magnetization and with this magnetic surface charges giving
rise to shape demagnetization fields. It is the tendency to reduce these surface
demagnetization fields (pole avoidance principle) which finally give rise to the
formation of domains, where the reduction in demagnetization energy and the
cost of wall energy are balanced against each other.

In the following only thin film systems will be considered. In this case the
shape demagnetization field from the perpendicular surfaces prefers an alignment
of the magnetization parallel to the film plane. However, the presence of magnetic
anisotropies (others than shape, of magnetocrystalline origin for example) can
re-orient the magnetization. One important case considers a uniaxial anisotropy
which favors an alignment of the magnetization out of the film plane (called
perpendicular films here). This case represents a model system for the discussion
of the origin of domain formation as well as the confinement effects induced by
lateral reduction. Those aspects are presented in detail in the following sections.

15.5.2 Stripe Domains in Thin Films with Perpendicular
Anisotropy

Magnetic Oxides: A large amount of work was performed in the 70’s on per-
pendicular films mainly in single crystals of orthoferrites, hexagonal ferrites and
magnetic garnets with the idea of using the observed stable domain structures
for storing and processing binary data in magnetic recording devices [60,65,66].

In such films the competition between the shape demagnetization fields and
the out-of-plane magnetocrystalline anisotropy induces a periodic variation of
the order parameter leading to typical domain patterns which, depending on the
magnetic history can have the form of circular cylinders (bubble domains) or ser-
pentines (stripe domains) [39,60,61,62,63,64]. Typical bubble diameters in these
materials are on the order of 10 µm [60,65,66], and do not allow for sufficiently
dense packing of information to be competitive. The bubble domain diameter or
stripe domain width are given by the material parameters of exchange energy,
saturation magnetization and uniaxial anisotropy strength and scale with the
inverse of the magnetization [39,60,63,64].

Metallic Thin Films: The material parameters of metallic thin films (compare
Chap. 10) are all at least one order of magnitude larger than those of the oxide
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materials, which give rise to stripe or bubble domains with dimensions between
10 nm and 100 nm [67,68,69,70,71], being thus 100–1000 smaller than in the
oxide materials studied earlier. This is obviously exciting from the point of view
of possible applications.

Recently, the domain configurations in thin hcp Co(0001) films grown on Ru
buffers have been studied in our group as a function of film thickness [67]. The
relatively strong perpendicular uniaxial magnetocrystalline anisotropy (Ku =
6×106 erg/cm3) of these films has to be compared to the shape demagnetization
energy 2πM2

s yielding a Q factor Q = Ku/2πM2
s = 0.4 [39,67,68]. This means

that the anisotropy is in principle not strong enough to overcome the demag-
netization field. However, upon domain formation the effective demagnetization
field is reduced such that a perpendicular orientation of the magnetization inside
the domains can be stabilized.

Typical MFM images for stripe domains in Co films are shown in Fig. 15.3
from which the domain width L as a function of film thickness was deduced
as given in the graph of Fig. 15.3b. L decreases with decreasing film thickness
proportional to ∼ √

t (line) in accordance with Kittel’s law for stripe domains
[61]. In contrast, the ratio L/t, which scales the demagnetization field inside a
single domain, increases. This means that the effective demagnetization field in-
side a single stripe domain increases upon reducing t, causing the magnetization
to rotate into the film plane for a ratio L/t potentially larger than 1 [63,64,72].
This canting is seen in the MFM images (Fig. 15.3) by the decreasing contrast
of the stripe domains for t = 50 nm and t = 25 nm and the loss of any stripe
domain contrast in the thinnest film. The reoriention of the magnetization is
a continuous rotation process as indicated by the thickness dependence of the
in-plane remanence ratio Mr/Ms shown in Fig. 15.3a. Above 60 nm (region I)
the in-plane remanence is low, given only by the canted spins inside the domain
wall, while the domain magnetization is perpendicular to the film plane. In the
intermediate range II the remanence increases indicating a canting of the domain
magnetization towards the film plane. Below 20 nm, region III the magnetization
is fully in-plane.

15.6 Micromagnetic Configurations in Mesoscopic Dots

15.6.1 Reduction of Lateral Sizes

As outlined in Sect. 15.5.1, domains are formed to reduce demagnetization shape
energies arising at the sample surfaces. For each system different domain con-
figurations or magnetization distributions can be induced, depending on the
magnetic history. These different configurations will generally be characterized
by different energies. Besides the dependence on the particle shape and size, the
various possible domain configurations will also be determined by the strength
and symmetry of its magnetic anisotropy.

A reduction of the system size enhances quite generally the relative impor-
tance of the surface boundaries. For example, starting from an in-plane magne-
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Fig. 15.3. MFM images of stripe domain structures developing in epitaxial Co(0001)
thin films. Images of different thickness are shown for a strong stripe structure for
t = 50 nm, a weak stripe structure for t = 25 nm and an in-plane magnetized film
t = 10 nm. These three images correspond to the three regions I, II, III respectively
given in (a) where the thickness dependence of the in-plane remanence ratio Mr/Ms is
shown. (b) The thickness dependence of the domain width L for continuous Co(0001)
films (closed circles) and 500 nm square Co(0001) dots (open circles). The dotted line
is a fit to

√
t.

tized continuous film, the demagnetization fields arising at the edges are negli-
gible compared to the bulk of the film and and the ground state of the film is
the single domain state. Reducing the lateral sizes of the film, the demagnetiza-
tion fields across the film increase and induce at some point a domain structure
[39,73]. Interesting properties are expected when the geometrical dimensions are
further reduced, such that they become comparable to either the domain sizes,
the domain wall width (20 nm in Co hcp) or the exchange length (3.37 nm for
Co) [29,39,74,75,76,77]. In particular, below a critical system size it was pre-
dicted that domain formation is suppressed and the magnetic particle is in a
single domain state [39,78].
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In the following the influence of the reduction of the lateral sizes in two dimen-
sions will be discussed for Co(0001) dots with perpendicular uniaxial anisotropies
for the three thickness regions of Fig. 15.3a with (i) perpendicular stripe domains,
(ii) canted stripe domains and (iii) in-plane magnetization. The reduction of the
lateral sizes of the continuous film in only one dimension, yielding wires is dis-
cussed in Sect. 15.8.

15.6.2 Preparation

The epitaxial Co(0001) dots with perpendicular uniaxial anisotropy presented in
the following were prepared using X-ray lithography and ion beam etching from
continuous epitaxial Co(0001) hcp films in arrays of 5×5 mm2 square. The dots
have a square basal plane with 0.5 µm lateral dimension, 1 µm array periodicity
and a thickness varying from 10 to 150 nm [29,38].

15.6.3 Domains in Perpendicular Dots: Effect of Thickness and
Shape

Fig. 15.4. Stripe domains induced in ∼ 0.5 µm wide epitaxial Co(0001) dots 50 nm
thick and demagnetized (a) parallel to the edge of the square dot and (b) along the
diagonal. (c) Circular stripe domains induced in ∼ 0.5 µm wide epitaxial Co(0001)
dots 25 nm thick and demagnetized parallel to the edge of the square dot.

MFM images for square Co dots (500 nm) are shown in Fig. 15.4 for two
different in-plane demagnetization states for fields applied (a) parallel to the
dot edge and (b) parallel to the dot diagonal. These dots have a thickness of
50 nm corresponding to the thickness region I, Fig. 15.3, of perpendicular domain
magnetization. For these dots the influence of the thickness and the effect of
shape are considered [29,38,79,80].

Dot Height: The number of domains inside the dots increases with decreasing
dot thickness, corresponding to a decrease in domain size in much the same way
as in the continuous thin films, see Fig. 15.3b. When the domain size is much
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smaller than the lateral dimension of the dot, one expects identical behavior for
a continuous film and a magnetic dot. This is verified in Fig. 15.3b where the
domain size as a function of thickness is compared for the continuous films (•)
and the dots (◦) [80]. The dependence of the domain size on thickness is the
same in both cases. This indicates that the magnetostatic energy at any point
inside a domain is primarily determined by nearby domains.

Shape Effects: While the domain sizes do not differ much in the square dots
and the continuous films, effects of the shape and finite size can be clearly ob-
served for the alignment and order of the stripe domain pattern. For the continu-
ous films, the stripe domain structure shown for t = 50 nm in Fig. 15.3 is induced
by an in-plane demagnetization procedure which results in well aligned stripes
oriented along the applied field direction, independent of the orientation within
the film plane. In the case of the square dots, shown in Fig. 15.4a,b, it is ob-
served that the stripes are not very straight and can show a strong bending away
from the field direction. Furthermore this missorientation and bending is more
pronounced when applying the field along the diagonal, compare Fig. 15.4a,b.
The bending in the case of Fig. 15.4a can be explained by the nucleation process
of the stripe domains, as shown in [81]. More interesting is the dependence on
the field orientation. It appears that upon demagnetization along the dot diago-
nal, domains are nucleated which have a tendency to align parallel to the edges
rather than to the demagnetization field direction and which try to avoid the
corners of the dots [79,80]. A possible explanation for this anisotropic order of
the stripe pattern as a function of field orientation may be given in terms of the
configurational anisotropy discussed further below in Sect. 15.6.3 for in-plane
magnetized single domain square elements [77,82]. At saturation along the diag-
onal, the magnetization is in-plane yielding an inhomogeneous demagnetization
field across the square. The demagnetization fields inside the corners are much
stronger and induce an inhomogeneous alignment of the magnetization upon re-
ducing the field similarly to the leaf state discussed below in Fig. 15.12. Since the
domain walls orient parallel to the local field at nucleation, an inhomogeneous
demagnetization field which superposes to the applied field can lead to strongly
curved stripe domains avoiding corners.

15.6.4 Domains in Canted Dots

MFM images for square Co dots 500 nm wide and of 25 nm thick are shown
in Fig. 15.4c [29,38,80]. This thickness corresponds to the thickness region II
in Fig. 15.3, of strong canting of the domain magnetization towards the film
plane. In the dots, the stripes form a complete concentric circular ring system
of alternating black and white domains tending to keep the stripes parallel to
the edges of the dots. This circular arrangement implies that a singularity oc-
curs at the center of the dot where the in-plane magnetization reorients fully
perpendicular to the plane to form a so-called vortex structure. This pattern
is obtained independent of the orientation of the in-plane demagnetization field
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and must be analyzed in terms of the in-plane and out-of-plane components of
the canted domain magnetization giving rise to in-plane and perpendicular de-
magnetization fields. The tendency to reduce the out-of-plane demagnetization
field component induces the alternating stripes. In contrast, the presence of an
in-plane magnetization component, giving rise to in-plane demagnetization fields
induce the circular arrangement of the stripes in order to avoid surface charges
at the dot edges. This indicates that strong effects are expected when the mag-
netization component is fully in-plane in dots patterned from Co(0001) films of
region III of Fig. 15.3.

15.6.5 Domains in In-Plane Circular Dots

As discussed in the previous section, the presence of an in-plane magnetization
component can have a drastic influence on the geometric arrangement of the
stripe domains. In the following we will therefore consider only elements pat-
terned from in-plane magnetized materials. These are materials corresponding
either to those described in Fig. 15.3 in the thickness region III, where the mag-
netization in the continuous film is rotated fully in-plane, or materials without
magnetic anisotropy.

For such in-plane films, the reduction of the lateral sizes induces first a multi-
domain structure in order to minimize the edge demagnetization fields. When the
lateral dimensions of the element become comparable to the width of the domains
only simple magnetization configurations can be realized as a direct consequence
of the finite size effect [40,83]. Upon further size reduction comparable to the
lengthscale of the domain-wall width the domain structure will finally turn into
a single domain or near-single domain configuration [83,84]. It is this extreme
limit which will be discussed in this section for in-plane circular dots and in
Sect. 15.7 for in-plane circular rings. Focus will be given to (i) the stability
of the different configurations and (ii) the transition as a function of thickness
and lateral dimension between the single domain state and simple flux-closure
configurations.

Single Domain and Vortex Configurations: MFM investigations of arrays
of epitaxial circular Co(0001) dots of 200 nm diameter have shown that different
magnetic states can be induced depending on the dot dimensions as well as on
the magnetic history [74,85]. In Fig. 15.5, two examples are shown for t = 10 nm
after (a) in-plane saturation and (b) out of plane demagnetization. The strong
dipolar contrast in Fig. 15.5a is interpreted as a single domain state while the
weaker contrast in Fig. 15.5b with a dark spot in the center is indicative of
a vortex-like state for which the magnetization vectors remain parallel to the
edges. The circular magnetization path results in a singularity in the center of the
dot where the magnetization turns perpendicular out of plane, giving the name
to this magnetization configuration. Similar observations have been made by
several authors for polycrystalline circular dots which do not exhibit crystalline
anisotropy [75,76,86,87] as well as on elliptical or elongated dots [88,89,90,91].
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Fig. 15.5. MFM images of (a) a single domain structure and (b) a vortex type structure
observed in 200 nm diameter epitaxial Co(0001) circular dots of t = 10 nm; (c) and
(d) are the corresponding magnetization vector plots obtained from 3D micromagnetic
modeling.

Particularly nice are the Lorentz transmission electron microscopy observations
reported by Schneider et al. [76] and discussed further below in Fig. 15.8.

Reversal of the Single Domain and Vortex Configurations: Further
experimental evidence of these two magnetization configurations was given by
Cowburn et al. [84]. They have measured two classes of magnetization loops, see
Fig. 15.6, probed by in-plane Kerr magnetometry for soft NiFeMo (Supemalloy)
circular dots as a function of the lateral dot dimension and the dot height. These
loops are reminiscent of either a flux closing type of magnetic structure with the
formation of a central vortex (V) (Fig. 15.6a) or a single domain (SD) structure
in which the magnetization is aligned along one specific direction within the dot
(Fig. 15.6b).
Single domain reversal in in-plane fields: As shown on the magnetiza-

tion curve, Fig. 15.6b, for a 100 nm wide and 10 nm thick NiFeMo dot array, the
single domain loop retains a high remanence at zero field and switches abruptly
at very low field because of the absence of anisotropy [84]. This reversal is classi-
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(c)

V

SD

Fig. 15.6. Hysteresis loops measured by Kerr magnetometry from Supermalloy
NiFeMo circular dots of t = 10 nm and (a) 300 nm and (b) 100 nm diameter. (c)
Experimental phase diagram denoting the single domain (full dots) and vortex states
(open circles) as a function of dot diameter and thickness. (From [84].)

cally described by the Stoner–Wolfarth model [39,92], which treats the reversal
process as a coherent rotation of the magnetization. This reversal type is further
confirmed by MFM imaging under a magnetic field performed on polycrystalline
Co dots [93], which display a purely dipole character (Fig. 15.7). Varying the
field shows that the magnetization rotates coherently and locks on the opposite
direction.
Vortex reversal in in-plane fields: As seen from Fig. 15.6a for a 300 nm

wide and 10 nm thick NiFeMo dot array [84], when the applied field is reduced
from saturation, the dots retain full moment until a critical field slightly before
crossing zero field, at which point nearly all magnetization is lost. The sudden
loss of magnetization is characteristic of the formation of a flux-closing configu-
ration.

This description of the macroscopic hysterisis loop taken from an array of
dots is in agreement with the observation of the reversal of a flux-closure struc-
ture of soft NiFe dots, see Fig. 15.8a, reported recently by Schneider et al. [76]
using Lorentz transmission electron microscopy. The observation started at an
in-plane field of -200 Oe, which is sufficiently high to saturate the disks to the
left. Increasing the magnetic field from saturation leads first to the formation of
magnetization inhomogeneities at the edges of the dots. A vortex state appears
for a field of −60 Oe, away from the center of the dot. This indicates that the
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Fig. 15.7. MFM images as a function of the applied field for t = 10 nm polycrystalline
circular Co dots of 500 nm diameter. The field values given correspond to those of the
external applied field generated by two permanent magnets with variable separation.
The actual field is the sum of the applied and the tip field.

magnetic rotation center moves perpendicular to the direction of the applied
field to give rise to a net contribution of the magnetization along the direction
of the applied field. Further increase of the external field results in the motion
of the vortex (perpendicular to the applied field) until at zero field, the vortex
center coincides with the geometric disk center. This then results in a zero re-
manent magnetization in agreement with the M–H curves shown in Fig. 15.6a.
Field reversal shifts the vortex center towards the particle border as shown in
Fig. 15.8a.

This experimental observation is in agreement with 2D numerical micromag-
netic calculations using the NIST OOMMF code [54]. As shown in Fig. 15.8b, at
the early stage of the reversal process, a magnetization vortex is formed at the
border of the element along the upper-edge. The polarity of the magnetization
circulation is such that the bottom part of the magnetization vortex is in the
same direction as the applied reversing field. At zero field the vortex is in the
center and during the field reversal the vortex is expulsed at the lower-edge of
the dot element.
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Fig. 15.8. (a) Lorentz microscopy images for circular Permalloy dots of t = 15 nm
and 340 nm diameter showing the motion of a vortex as a function of an in-plane field
(from [76]) (b) Magnetization vector plots obtained from 2D numerical micromagnetic
calculations using the NIST OOMMF code [54] for circular Co dots of 400 nm diameter
and 50 nm thickness. (c) MFM images showing the reversal for epitaxial Co dots 10 nm
thick and 500 nm in diameter measured with the external field applied in-plane.

In Fig. 15.8c, corresponding MFM images are given for the reversal obtained
on polycrystalline Co dots [93]. This field dependent sequence shows the transfor-
mation of the single domain state at negative saturation, into the vortex state at
zero field and finally into the reversed single domain state at positive saturation.
Similar MFM observation have been reported by Pokhil et al. [87] on NiFe discs
of 800 nm diameter and varying in thickness (5 to 50 nm). Interesting to note
is that in these experiments the deviations from the single domain state upon
lowering the saturation field led for the thinner dots to the reversible formation
of a double vortex structure (Fig. 1 in [87]) before an irreversible transition to
the single vortex state occurs, with a vortex motion described in Fig. 15.8a. In
the initial double vortex structure, the vortices are described as partially open
with opposite chirality and appear at opposite positions along the edges.
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Phase Boundary and Energetics: From the Kerr hysteresis loop measure-
ments, Fig. 15.6a,b described by Cowburn [84] an experimental phase boundary
between the vortex and the single domain state has been deduced as a func-
tion of dot thickness and diameter. This is given in Fig. 15.6c. For larger dot
thickness and diameter the vortex state is stable, while a transition to the single
domain state occurs upon decreasing thickness and diameter. This transition
is explained in simple terms by the dominant energy contributions in the two
configurations. The flux-closure vortex-structure minimizes the demagnetization
field energy and is dominated by exchange energy. In contrast, the single domain
configuration is dominated by demagnetization field energy with negligible ex-
change energy. Upon decreasing the diameter for example at constant thickness,
the exchange energy of the vortex structure becomes more and more comparable
to the magnetostatic energy of the single domain state. Consequently, below a
critical diameter the circular magnetization mode can no longer be maintained
and the single domain state becomes energetically more favorable. An example
for this transition by calculating the total energy density of circular dots is shown
in Fig. 15.10 and is described in more detail further below. Similar arguments
apply for reducing the film thickness at constant diameter. It is interesting to
note that Cowburn et al. [84] have compared the experimental phase diagram
with the one calculated using micromagnetic simulations and found them in good
agreement.

Another interesting aspect concerns the coexistence of magnetic states. In
the MFM measurements performed on the Co(0001) dots [74], the single domain
and vortex states are observed simultaneously with a larger probability of single
domains to exist after in-plane saturation. However, those single domain states
are found to be metastable in agreement with micromagnetic calculations and
the phase diagram in Fig. 15.8c, which predict a vortex structure as the stable
state. Indeed, as shown in Fig. 15.9 for a 200 nm diameter and 20 nm thick
Co(0001) dot, small perturbations such as the stray field from the MFM tip, can
induce a transition into the vortex-like state. This type of transition from one
state to the other will be discussed in more details in Sect. 15.7 in context with
the cobalt rings.

Stability of the Vortex State in Circular Dots: MFM or Lorentz micro-
scopies have been performed by various authors on systems with perpendicular
magnetic anisotropy [74] and zero anisotropy [75,76,86,87]. It is interesting to
note that similar observations of the presence of the vortex state have been
made. The recent experiments performed on soft NiFe dots [76] – Fig. 15.8a –
or soft Co dots [93] – Fig. 15.8c – and epitaxial Co(0001) dots with large mag-
netic anisotropy perpendicular to the dot base [74] – Fig. 15.5 –, are a perfect
illustration. This raises the question upon the role of the perpendicular uniax-
ial anisotropy in the epitaxial Co(0001) dots for the formation and stability of
the vortex state, since one may suppose that such an anisotropy may favor the
presence of vortices or stabilize the vortex state.
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Fig. 15.9. The influence of the MFM tip on the single domain pattern of epitaxial
Co(0001) dots. By decreasing the lift scan height from (a) 100 nm to (b) 50 nm, the
metastable single domain state transforms into the vortex state, which is the ground
state of the system (thickness 20 nm, diameter 200 nm).

In order to investigate the role of the Perpendicular Magnetic Anisotropy
(PMA), 3D numerical micromagnetic calculations were performed [94]. Two
cases were compared, Co dots with strong PMA and those having zero mag-
netocrystalline anisotropy. Using different starting configurations, the system
relaxed either into a single domain state, compare Fig. 15.5c or a vortex-like
state, compare Fig. 15.5d. In the thickness range between t = 5 nm to 20 nm
and for dot diameters of 60 nm to 200 nm, the vortex-like state was found to be
in both cases the energetically lowest state. The dependence of the total energy
density on the diameter of the dots is shown in Fig. 15.10 for dots of t = 5 nm,
yielding a very similar behaviour in both situations. The difference being that the
total energy density of the single domain and vortex dots with PMA is shifted
upwards by the amount of the magnetic anisotropy energy constant Ku. This
shift is due to the fact that most spins are in-plane and hence point into the
hard direction of the magnetic anisotropy.

From Fig. 15.10, it can be seen that the presence of the PMA does not
influence the ground-state configurations very much, nor the transition from the
vortex state towards the single domain state. This transition takes place at a
slightly lower critical diameter of 60 nm for Co(0001) dots with PMA compared
to 67.5 nm for dots with no anisotropy. This weak dependence on the PMA is
related to the fact that the thickness range investigated here, corresponds to the
one for which the continuous epitaxial Co(0001) films are in-plane magnetized
(Q = 0.4), see Fig. 15.3, region III. Thus, thin Co(0001) dots with a thickness
below 20 nm behave like in-plane isotropic elements and the transition from the
vortex to the single domain state is determined by the the same energetics as
for dots with zero magnetic anisotropy (pure balance between demagnetization
shape energy and exchange energy). However, the presence of the PMA lowers
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Fig. 15.10. Total energy density of the vortex (open circles) and single domain states
(full squares) as a function of the dot diameter obtained from 3D numerical micro-
magnetic calculations for circular Co dots of t = 5 nm and having (a) perpendicular
uniaxial anisotropy and (b) zero anisotropy.

the total energy density of the magnetization inside the vortex core slightly, since
the spins inside the vortex point into the magnetocrystalline easy axis and thus
lower their PMA energy. Close to the critical diameter of 60 nm (t = 5 nm),
this gain in energy is most pronounced, since the relative volume fraction of the
vortex is large (vortex diameter 30 nm [94,95]). This stabilizes the vortex state
to smaller diameters and as a consequence the critical diameter for the transition
into a single domain state is pushed to lower values as compared to dots with
zero magnetic anisotropy, see Fig. 15.10a,b.

It is noted that the critical diameter Φc calculated here for Co dots (Φc =
60 − 67.5 nm at t = 5 nm) when scaled with the magnetization is in good
agreement with the values given in the phase diagram of Fig. 15.6c [84]. Due to
the larger value of the saturation magnetization Ms in Co (1400 emu/cm3 to
be compared to 800 emu/cm3 for NiFeMo [84]), the critical diameter is pushed
to lower values in the Co dots when compared to the corresponding critical
diameters reported for NiFeMo (approx. 150 nm for t = 5 nm).

Configurational Anisotropy in Mesoscopic Ferromagnets: This section
on dots will not be complete without discussing the effect of configurational
anisotropy. This type of anisotropy, first theoretically proposed in 1988 by Sch-
abes and Bertram [96] for the case of magnetic cubes, finds its origin in the



354 K. Ounadjela et al.

fact that sharp edges in constrained nanostructures induce deviations from the
uniform magnetization, deviations which are dependent on the direction of the
magnetic moment with respect to the axis of the nanostructures. First exper-
imental evidence has been reported by Cowburn et al. [82] for flat squares of
permalloy. The case of single domain flat square structures is ideal because they
do not exhibit any in-plane demagnetization shape anisotropy and thus make
the observation of any other type of anisotropy easier. The results of Cowburn
et al. [82] are illustrated in Fig. 15.11 for a 15 nm thick permalloy square with
a sidelength of 150 nm. The polar plot of the effective field reveals a fourfold
anisotropy with an abrupt minimum in the internal anisotropy field, whenever
the magnetization is parallel to one of the edges of the square nanostructures.
The strength of this configurational fourfold anisotropy field deduced from the
polar plot has been found extremely strong, of the order of 360 Oe [82].

Fig. 15.11. Polar plot of the effective field (internal anisotropy field plus 660 Oe of an
external field) of NiFeMo square elements as a function of the applied field direction
(from [82]).

Although the energy of a perfect uniformly magnetized square is indepen-
dent of the in-plane magnetization direction, when taking into account the non-
uniformity of the magnetization distribution at the edges, energy differences do
arise. The non-uniformities lead to magnetization patterns shown in Fig. 15.12 as
derived from 3D micromagnetic calculations and depend on whether the sample
is magnetized with the external field parallel to the edges (flower state) or at 45◦

from the edges (leaf state). These two magnetic configurations differ in energy
[97]. The anisotropy energy measured is therefore related to the energy difference
of the two magnetic configurations shown in Fig. 15.12, and thus to the geomet-
ric shape of the square structure. This is confirmed by numerical micromagnetic
calculation as shown in Fig. 15.11b. Such anisotropy should be more difficult to
evidence in any structures with small perturbations of magnetizations such as
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Fig. 15.12. Magnetization vector plot showing (a) the flower state and (b) the leaf
state for a square Permalloy element of t = 5 nm and 95 nm side length. The dotted
black lines indicate the demagnetization field lines. The vector plots were obtained
from 3D numerical micromagnetic simulation after saturation (a) parallel to the edges
and (b) at 45◦ from the edges.

circular or ellipsoidal type of magnets for which the magnetizations are more
uniform.

15.7 Domains in Circular Rings

15.7.1 Linear versus Circular Magnetization Mode

In all reported MRAM designs up to date, the magnetization in the active de-
vice is oriented linearly, mainly controlled by the shape of the element, such as
rectangles or long ellipses. In such type of memory elements, it is known that
non-repeatable switching is caused by the presence of edge domains [83,98,99].
To overcome the irreproducibility in the switching, several groups have proposed
to taper the end of the magnetic element [98,99,100,101,102,103]. The sharpness
of the tapered ends becomes critically important for the repeatability of the
switching field for an element with linear magnetization mode [20,83,99,103].
This means that geometric variation of the ends from element to element can
yield significant variation of the magnetic switching, and effectively reduces the
margin for memory element addressing [103].

Instead of having the magnetization linear in the memory element, the mag-
netization orientation can be circular, forming a flux-closure structure as dis-
cussed in the previous section. The problems associated with the end effects of
the linear elements can thus be eliminated. In order to form a flux-closure or
circular magnetization mode, the memory element can be either a ring or a cir-
cular dot. As discussed in Sect. 15.6.3, the circular magnetization configuration
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in circular dots, can only be maintained above a critical diameter (increasing
with decreasing thickness) [84], see Fig. 15.6c. Below this critical diameter, the
single domain state is the energetically lower state.

One way to stabilize the circular magnetization mode to smaller diameters, is
to eliminate the central vortex which contains the dominant energy contribution
of the flux-closure configuration in form of exchange energy. For such ring shaped
elements, the flux-closure structure results in a significantly lower energy than
the flux-closure structure of a circular dot with the same outer diameter. Hence
it is clear, that upon reducing the outer diameter of the rings, the transition
into a single domain state, which takes place in circular discs, is suppressed in
the ring geometry to lower values. For example the 3D calculations show that
for a circular dot of t = 5 nm the flux-closure state is the energetically lower
state only above a critical diameter of 60 nm (see Sect. 15.6.3). In contrast,
for the ring geometry the flux closure state is the energetically lower state well
below 60 nm. The latter can only be considered correct as long as the inner
diameter is larger compared to the diameter of the central vortex (30 nm for
Co [94]), which forms in circular discs. Furthermore, the introduction of the
inner edge reinforces the circular magnetization configuration. It is noted that
recently a vertical magneto-resistive random access memory (VMRAM) design
was proposed based on a ring-shaped magnetic multilayer stack [20,103].

15.7.2 Magnetization Configurations in Submicron Rings

The stability range of the flux-closure structure of polycrystalline Co rings as
a function of film thickness and ring diameter using MFM images and micro-
magnetic simulations has been studied recently in our group [104]. The thickness
range investigated lies between 10 nm and 50 nm. The outer ring diameter varies
between 300 nm and 800 nm, while the inner ring diameter varies between 100 nm
and 300 nm.

In contrast to the case of circular dots discussed in the previous section,
for all dimensions investigated, the flux-closure state is the energetically lowest
state. However, a metastable single domain state at zero field can be induced at
remanence after saturation in an in-plane applied field. The probability to trap
this single domain state increases for decreasing film thickness and increasing
outer diameter. Figure 15.13 identifies the MFM images and the corresponding
micromagnetic configurations of the single domain and flux-closure structures,
respectively. The strong black and white contrast in Fig. 15.13a corresponds to
the single domain structure whereas the weaker alternating contrast shown in
Fig. 15.13b corresponds to the flux-closure state. Figure 15.13c,d gives the cor-
responding magnetization-vector plots obtained from 3D numerical calculations.
It is noted that in order to make the flux-closure configuration visible in the
MFM imaging, all rings were patterned in an octagonal rather than a circular
shape.
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Fig. 15.13. MFM contrast of octagonal polycrystalline Co rings (outer diameter do =
800 nm, inner diameter di = 400 nm and t = 20 nm) denoting (a) a single domain
state and (b) a flux-closure configuration. (c) and (d) are magnetization vector plots
of circular ring elements (outer diameter 200nm, inner diameter 50 nm and thickness
t = 5 nm) calculated using a 3D micromagnetic code

15.7.3 Metastable States Observed Using the MFM Tip Effect

The metastability of the in-plane remanent single domain state is demonstrated
in Fig. 15.14, where repeated zero field MFM scans over the same area of rings
are shown. The scan height is held at a large distance of 150 nm, which still
allows one to visualize the strong dipolar contrast of the single domain state,
but not the much weaker contrast of the flux-closure state. In Fig. 15.14a, almost
all rings (96%) are in a single domain state before the MFM tip is scanned for
the first time (from top to bottom). The tip field appears to be strong enough
to switch the rings during the scan, as can be seen by the fact that for many
rings only the upper black half is visible. Repeating the scan a second time (from
bottom to top), only 25% of the rings are left in the single domain state, with
more rings switching into the flux-closure state during the scan. After the fourth
scan, only 14% of the rings are left in the single domain state, see Fig. 15.14b. It
is noted that the reversal of the dots from the single domain into the flux-closure
state is not a relaxation effect. Changing the scan area, after having ‘erased’ in
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Fig. 15.14. Repeated MFM scans at remanence after in-plane saturation of the same
area of 20 × 20 µm2 for polycrystalline Co rings of t = 20 nm and do = 800 nm. The
images were scanned (a) in a first scan from top to bottom and (b) in a fourth scan
from bottom to top. For a certain number of rings only the upper black part of the
single domain state is seen, revealing that the tip-sample interaction switches the rings
into the flux-closure state when positioned above the center of the ring.

one area most of the single domain states by repeated scanning, the new area
shows again the high remanence single domain state given in Fig. 15.14a.

From Kerr magnetometry performed on all ring arrays, it is found that the
probability of the presence of the metastable single domain state at remanence
depends on film thickness and outer ring diameter. This is summarized in the
qualitative phase diagram of Fig. 15.15, where the experimental boundary be-
tween the low remanence loops at zero field (flux-closure state) and the high
remanence loops (single domain state) is shown as a function of thickness and
outer ring diameter. Micromagnetic calculations indicate that for increasing di-
ameter the energy of the single domain and flux-closure state both decrease and
approach each other. Hence, the probability increases for trapping the single
domain state in a local energy minimum at in-plane remanence.

15.7.4 Reversal Processes in Rings

Although, as shown above, the in-plane remanent state can be the single domain
state, the reversal for all rings with dimensions investigated takes place via the
transformation of the saturation single domain state into the flux-closure struc-
ture and then into the reversed single domain state in a reversed bias field. This
process is illustrated in Fig. 15.16 where the magnetization reversal has been
studied by MFM imaging in an applied field for a large array of rings having
a large remanence at zero field (as deduced from Kerr hysteresis-loops). The
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Fig. 15.15. The experimentally determined ‘phase diagram’ of the metastable single
domain state (solid circles) and the flux-closure state (open circles) as a function of
thickness and outer diameter for polycrystalline Co rings obtained from Kerr-effect
hysteresis loop measurements. The solid line represents the calculated boundary [104].

MFM images shown in Fig. 15.16 were scanned in the reversed applied field at
values indicated on top of each image, the positive saturation field pointing in
the upward direction and the negative reversed field pointing in the downward
direction. To minimize the tip-sample interaction, a lift scan height of 200 nm
was chosen. The actual field value at each ring is hence the sum of the applied
field and the tip field. Starting from the remanent state at 0 Oe (induced in the
absence of the tip), a large number of rings switches from the single domain into
the flux-closure state due to the tip field, compare Fig. 15.14. However, after sev-
eral scans a number of rings are stable and a finite field of −100 Oe is required
to switch all rings from the single domain into the flux-closure state as shown
in Fig. 15.16. This means that the reversal occurs through the formation of a
flux-closure configuration. Upon increasing the reversed field value to −450 Oe
(maximum field of the magnet used) 70% of the rings are in the reversed single
domain state. Reducing the field back to zero, the remanent state is lower (25%)
than the initial remanent state (96%). This is because the initial remanent state
was obtained in the absence of the tip field, while the remanent state at the
end of the hysteresis cycle is obtained in the presence of the tip field, so a small
additional field is sensed by the rings.
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Fig. 15.16. MFM images of an area of 20 × 20 µm2 for polycrystalline Co rings of
t = 20 nm and outer diameter of 800 nm as a function of an applied field. The arrow
to the left indicates the reversed field direction Hrev (negative).

15.8 Domain Configurations in Wires

In the last section of this chapter, we concentrate on the micromagnetic con-
figurations of single magnetic wires. So far, we have addressed the reversal pro-
cesses in dots and rings while most of the pioneering studies have been carried
out on elongated particles [36,105,106,107] because they act as a model system
for the nucleation-propagation reversal process. From these studies, basic mi-
cromagnetic information such as the nucleation volume, can be derived [36,106].
Moreover, due to the high aspect ratio of length to lateral cross-section, the mag-
netization direction can be well controlled by the shape of the nanostructures
as well as by the magnetic anisotropy of the material. In the following, flat rect-
angular epitaxial cobalt wires are considered with in-plane uniaxial anisotropy
oriented either perpendicular (Sect. 15.8.2) or parallel (Sect. 15.8.3) to the long
wire axis.

15.8.1 Sample Preparation

The wires were prepared from epitaxial (1010) Co thin films of thickness t =
30, 40, 50, 60 and 80 nm. The films were grown under ultrahigh vacuum con-
ditions on (110) MgO substrates by molecular beam epitaxy using a Mo-Cr
buffer layer. Structural investigations confirm the hcp structure and magnetic
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investigations confirm a strong in-plane uniaxial anisotropy [108]. The films
were patterned using electron-beam lithography, lift-off techniques and ion beam
etching. For each thickness, wire arrays were prepared for wire widths of w =
100, 150, 200, 500, 800 and 1000 nm. The wires are 10 µm long and the separation
between the wires is 5 µm, sufficient to neglect any dipolar interaction. For each
set of (t, w) – values, wires were patterned whose long wire axis is aligned either
perpendicular or parallel to the magnetocrystalline anisotropy axis.

15.8.2 Wires with Crystal Anisotropy Field Perpendicular to the
Wire Axis

Single Domain to Stripe-Domain Transformation: The flat rectangular
Co wires are characterized by a strong uniaxial magnetocrystalline anisotropy
(Ku = 6×106 erg/cm3) oriented in-plane and perpendicular to the wire axis. This
magnetocrystalline anisotropy is in competition with the demagnetization shape
anisotropy, which in turn favors an alignment of the magnetization parallel to
the wire axis. A reduction of this demagnetization energy can be achieved by the
formation of a periodic stripe domain pattern, in analogy to the stripe domains
developing in continuous perpendicular Co(0001) films, see Sect. 15.5.2. In a
further analogy, the stripe domain width can be controlled by the wire thickness
and the wire width.

However, in contrast to the continuous films, which can be described by a
thickness independent, constant Q-factor Q0 = Ku/4πMs (= 0.4 for Co), for the
wires an effective Qeff factor can be defined, which varies as a function of system
size (t, w). This is because, in contrast to the continuous film (with Neff =
1), the effective demagnetization factor Neff inside the wires is not constant
upon variation of film thickness t and wire width w. The corresponding effective
demagnetization factor is given by Neff = (2/π) arctan(t/w) which has values
between 0 (for t → 0 or w → ∞) and 1 (for w → 0 or t → ∞). This yields
an effective Q-factor Qeff = Q0/Neff , which can vary between the value of the
continuous film (Q0 = 0.4) and infinity.

For the continuous films different types of stripe-domain structures (open
(strong) stripes Q > 1, flux closure (weak) stripes Q < 1) have been described
depending on the Q-value [109]. Thus, one expects for the wires that different
domain configurations can be stabilized upon variation of the wire dimensions
(t,w).

In Fig. 15.17 a phase diagram as a function of the lateral width w and
the thickness t is shown [41], taking into account four possible magnetization
configurations: (1) the transverse single domain (TSD) state (M perpendicular
to the wire axis), (2) the longitudinal single domain (LSD) state (M parallel to
the wire axis, (3) the open stripe structure (OS) and (4) the flux closure (FC)
stripe structure. The boundaries between the different configurations (dotted
lines in Fig. 15.17) were calculated from a domain theory model based on Kittel’s
formulation [61].

In order to be able to compare this predicted phase diagram to experimental
data, one first has to define the procedure by which the magnetic system can
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Fig. 15.17. Qualitative phase diagram (t–w) of the ground state domain configura-
tions of epitaxial Co(1010) wires with uniaxial magnetocrystalline anisotropy aligned
perpendicular to the long wire axis. The dotted lines are calculated boundaries while
the bold line is the experimental boundary between the transverse single domain (open
circles) and the open stripe-domain state (full dots). Inset (a) MFM images for wires of
w = 800 nm showing the evolution of the ground state with t. Inset (b) MFM images
for wires of w = 200 nm showing the thickness dependence of the domain period.

relax into its ground state. It was already mentioned in the case of dots and rings
(Sects. 15.6,15.7), that depending on the magnetic history the induced configura-
tion may correspond to a metastable state. For instance, as shown in Fig. 15.18,
either a transverse single domain state is induced when magnetizing along the
crystal anisotropy direction (in-plane and perpendicular to the wires). However,
a stripe-domain pattern is induced when magnetizing along any other direction.
For reasons explained below, the stable ground state is induced after hard axis
demagnetization procedures (labelled D‖s and D⊥ in Fig. 15.18). Typical MFM
images of stable single domain and stripe domain states are shown in Fig. 15.17
for different values of t at constant w with (a) w = 800 nm and (b) w = 200 nm.
The stable single domain and stripe domain configurations are summarized in
Fig. 15.17 by the open circles and full dots respectively.
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Fig. 15.18. MFM images for a Co(1010) wire with w = 800 nm and t = 60 nm
obtained after different magnetization histories. D denotes a demagnetized state and R
a remanent state. Ku is the easy axis direction, s is the direction of the long wire axis
and ⊥ denotes the application of the magnetic field perpendicular to the film plane

For decreasing film thickness and increasing wire width, the transverse sin-
gle domain state is stabilized, because the gain in demagnetization energy by
nucleating the stripe-domain state decreases. For some critical values the gain
will not be sufficient to compensate the wall energy. Hence the system acquires a
transverse single domain state. The bold line in the (w, t)–diagram of Fig. 15.17
summarizes the experimental boundary between the stable stripe-domain state
(full dot) and the stable transverse single domain (open circle) state. The dis-
crepancy between the calculation (dotted line) and the experiments is due to the
fact that the Co bulk value for the domain wall energy (12 erg/cm2) energy was
used and taken as constant in the calculation. However, due to the vertical and
lateral confinement, the wall energy in the wires should be much larger [108]. 3D
micromagnetic calculations are currently in progress in order to determine the
energy of the wall for such wires but more importantly the wall structure itself.

Metastability of the Observed Magnetic Structures: As already dis-
cussed, metastable states can be induced depending on the magnetic history.
For instance, most of the wires investigated show a transverse single domain
state as the remanent state, when saturated along the direction of the crystal
anisotropy field (in-plane and perpendicular to the wire axis). This single domain
state is the stable state only for those dimensions reported in the phase diagram
as open circles. For all others, this state is metastable and is induced because
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the applied field parallel to the easy magnetocrystalline anisotropy axis gives a
preferential orientation to the magnetization M , blocking M in a local energy
minimum, which is separated by an energy barrier from the multi-domain stripe
state. This barrier decreases, the narrower and the thicker the wires are, due
to the increase in the in-plane shape demagnetization fields (scaling with t/w),
which favor the nucleation of reversed domains. This dependence is confirmed in
Fig. 15.19a for which the remanent state after saturation along the direction of
the crystal anisotropy direction (in-plane and perpendicular to the wire axis) is
shown. For w = 600 nm a pure transverse single domain state is stabilized, while
for w = 150 nm the stripe domain and transverse single domain state coexist
and for w = 100 nm a complete stripe structure is induced.

Fig. 15.19. MFM images taken on Co(1010) wires after in plane easy axis saturation
and at a lift scan height of 100 nm for w = 800 nm, 150 nm, 100 nm; t = 60 nm. (b)
Upon decreasing the lift scan height from 100 nm to 50 nm (left image) the number of
the stripe domains in a 150 nm wide wire is increased (right image), corresponding to
an irreversible switch of the magnetization.

The stability or meta-stability of the single domain state described above
can be experimentally verified by applying a small perturbation to the domain
structure. This can be done using the stray field of the MFM tip. As shown in
the left MFM image of Fig. 15.19b, the single domain and the stripe-domain
state coexist at zero field for a narrow wire of w = 150 nm. Upon lowering the
lift scan height from 100 nm to 50 nm when scanning the MFM tip over the
wire, the enhanced stray field from the MFM tip produces in some regions an
irreversible transition from the single domain into the stripe-domain state.
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15.8.3 Crystal Anisotropy Field Parallel to the Wire Axis

In contrast to the previous section, in the following cobalt wires are discussed
which are characterized by a magneotcrystalline uniaxial anisotropy that co-
operates with the shape anisotropy thus maintaining the magnetization parallel
to the wire axis. Two cases are considered, (i) wires having a flat rectangular
cross-section of 100 nm wire width and prepared from epitaxial Co (1010) thin
films by electron beam lithography and (ii) cylindrical wires with much smaller
circular cross-sections ranging from 30 to 50 nm. The latter are prepared by
electrodepositing Co into the pores of high quality track etched polycarbonate
membranes [43,44,45], see Sect. 15.2. These wires proved to adopt a rather good
quality hexagonal compact structure with a preferential texture along the wire
axis [45].

In both cases, the magnetic ground state is the single domain structure. The
magnetization reversal in a parallel field of such Co wires can, to a certain extent,
be simulated by a coherent (or in unison) rotation of spins [36,39,92,110]. In this
model, a single giant magnetic moment is subjected only, besides the external
field, to a first order uniaxial anisotropy of constant value Ku, the direction of
which is parallel to the wire axis. Micromagnetic theory predicts that in such
type of nanostructures, two other types of nucleation (and reversal) mechanisms
beside the coherent rotation can occur: buckling and curling [39,110,111,112].
All these reversal modes should result in a square hysteresis loop when the field
is applied parallel to the axis of the wire as observed experimentally [36,106].
Hence, only two magnetization states, parallel and antiparallel to the wire axis,
can be realized in this type of wires. This is confirmed by MFM imaging, as shown
in Fig. 15.20a, for a cylindrical Co wire of 35 nm diameter, after application of a
large field parallel to the wire axis [33]. The dark and bright contrasts at the wire
extremities correspond to magnetic charge distributions at the end faces, which
arise when the magnetization is in a single domain state and aligned parallel to
the wire axis.

In contrast to the saturation along the wire axis, a multidomain state with
head-to-head domain walls can be induced by saturation in a field perpendicular
to the wire axis, as shown in Fig. 15.20b. This multidomain structure arises
since upon reduction of the field from perpendicular saturation to zero, the
magnetization may rotate clockwise or counter-clockwise towards the wire axis.

Wall Structures: The dark and bright contrasts visible along the wire axis,
Fig. 15.20b, arise from the magnetic volume charges located at the domain
walls. This corresponds to the strong accumulation of magnetic charges at the
boundary between two longitudinally magnetized domains of opposite magneti-
zation directions. In bulk materials and continuous films with in-plane uniaxial
anisotropy, domains of opposite magnetization orientation are usually separated
by 180◦ domain walls which are parallel to the magnetization inside the do-
mains. This orientation arises essentially to avoid net magnetic charges of the
walls, by virtue of the pole avoidance principle. In contrast, the lateral con-
finement of the magnetization in small diameter nanowires with parallel-to-wire
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Fig. 15.20. Zero field MFM images of a 35 nm cylindricral electrodeposited Co wire
after saturation in a field (a) parallel to the wire axis and (b) perpendicular to the wire
axis.

anisotropy forces the domains to meet head-on and the separating walls to orient
perpendicular to the wire axis, hence to the domain magnetization. This results
in heavily charged walls having both volume and surface-pole distributions, ex-
hibiting therefore strong MFM contrasts, as shown in Fig. 15.20b.

As sketched in Fig. 15.21, a simple one dimensional model for the domain-wall
structure can be assumed in which the spins within the wall rotate perpendicu-
lar to the wire axis. One question to address is the precise configuration of the
magnetization inside the wall. 3D numerical micromagnetic calculations carried
out in our group have revealed two different wall magnetization modes for square
wires, as sketched in the x-y cross-sections of Fig. 15.21. These wall magneti-
zation modes are very similar to the single domain state and vortex state of
circular dots shown in Fig. 15.5, Sect. 15.6. In correspondence they are called
the transverse and the vortex-type wall. In the transverse wall the magnetiza-
tion is almost uniform across the diameter and all spins point everywhere into
the same direction perpendicular to the wire axis, giving rise to a transverse
demagnetization field. In contrast, in the vortex wall the magnetization forms a
circular magnetization path, where the wall spins try to stay parallel to the wire
surface thus reducing the magnetostatic energy. Similarly to the circular dots,
the total energy density of the two wall-magnetization modes depends on the
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Fig. 15.21. Bottom: MFM image of the domain wall contrast along an electrodeposited
Co nanowire. Above the MFM image, a 1D wall profile is shown where the magneti-
zation is averaged over the wire cross-section. In this 1D model the wall spins point
perpendicular to the wire axis. Above the 1D profile, the magnetization-vector distri-
bution is shown for a wire with square cross-section, as obtained from 3D numerical
micromagnetic simulations. Top: Magnetization vector plot showing the magnetization
distribution across the x-y square cross-section at the wall center (z = 0). Two modes
can be stabilized, a vortex type and a transverse mode.

diameter of the wires and a critical diameter exists below which the transverse
wall has a lower energy, compare the corresponding Fig. 15.10 for circular dots.
Using the parameters of Co this critical diameter is found to be approximately
20 nm. It is interesting to note that recently, numerical studies based on time
quantified Monte Carlo methods yielded similar wall-magnetization modes which
are nucleated in nanowires during the magnetization reversal.

Furthermore, it should be remembered that these configurations represent
a theoretical solution, which do not take into account the defect structure of
the real wires (variations of diameter, grain boundaries) at which the walls are
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pinned and which can modify the configuration shown above. Lastly, it will be
difficult to differentiate by MFM these two configurations, since the contrast
will be dominated by the strong magnetic volume charges which should be very
similar in both cases.

Fig. 15.22. MFM images of a 35 nm electrodeposited Co wire, after saturation in a
field perpendicular to the wire axis. Repeated saturation may lead to a different number
of domains. Attached to the horizontally aligned wire, a second smaller wire inclined
at 45◦ is seen.

Pinning Sites and Reversal Procedure: It is observed that for the circular
electrodeposited Co nanowires the number of domain walls induced in a single
wire after perpendicular saturation (or demagnetization) can vary from one ex-
periment to the next. For instance, three, four, five or even nine longitudinally
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magnetized domains of alternating magnetization directions were induced on a
single wire as shown in Fig. 15.22. This variation in number probably arises from
the fact that the exact field orientation varies slightly from one experiment to
the next, with the field being slightly more or less inclined towards the wire axis.
However, it is also observed that some walls occur at the same position along the
wire, suggesting that they are stabilized at pinning sites. Consequently, in order
to move the walls along the wire axis, a finite depinning field (applied parallel to
the wire axis) value is required. This is demonstrated in the image sequence of
Fig. 15.23 where it can be seen that weak and strong pinning sites are present.

Fig. 15.23. MFM images of a 35 nm electrodeposited Co wire. The top image shows
the wire in zero field after out of plane saturation. For the remaining images, a field
was applied parallel to the wire axis, with field values noted to the left.

The number of pinning sites and their respective pinning strengths will de-
pend on the crystalline quality of the wires. From TEM investigations of the
electrodeposited wires it is known that the wires contain many stacking faults
[44] and grains of micrometer sizes. For those wires a fairly large number of
walls can be induced (up to ten along a wire of 10 µm). In contrast, for the flat
rectangular 100 nm wide epitaxial Co(1010) wires it is found very difficult to
induce a large number of walls in a perpendicular remanent state, unless a local
constriction is artificially induced, see Fig. 15.24.
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Pinning centers

Fig. 15.24. MFM image taken from a flat rectangular epitaxial Co(1010) wire, pat-
terned by electron beam lithography. In order to induce pinning sites, constrictions
were defined along the wire axis as shown in the schematic on top.

Resistance Associated to the Presence of a Domain Wall: The gi-
ant magnetoresistance effect occurs in heterogeneous magnetic systems such as
magnetic trilayers and multilayer stacks consisting of alternating magnetic and
non-magnetic thin films [11,14]. It describes the change in resistance when the
magnetization of adjacent layers is switched from a parallel to an antiparal-
lel alignment. Recently, an analogy was drawn between such GMR multilayers
and homogeneous magnetic media, in which a magnetic domain wall replaces the
non-magnetic spacer layer [113,114]. Several experiments indicate, that the pres-
ence of a domain wall enhances the resistance [113,114,115,116,117], although
the deduced effect has been small. This positive contribution to the domain-wall
magnetoresistance (DW–MR) has been discussed theoretically [118] in terms of
an enhanced domain-wall resistivity ρw resulting from spin dependent scatter-
ing and spin channel mixing localized inside the domain wall. For thin enough
domain walls, spin channel mixing arises from a mistracking effect [113,114,118],
where the transport electron spins lag behind in orientation with respect to the
local magnetization orientation inside the domain wall.

Many experiments on the DW–MR used a system of magnetic stripe do-
mains [113,115,116,117], taking advantage of the high density of domain walls
and assuming that the domain resistance and the DW resistance form a net-
work of series resistors. However, the presence of other MR effects such as the
anisotropic magnetoresistance (AMR) [119] or the Lorentz-MR [120], as well as
a complex domain-wall structure often required a manipulation of the measured
MR data in different magnetization configurations in order to extract the contri-
bution from the domain wall [116]. These ‘parasitic’ effects can be avoided using
the parallel wire configuration described in Figs. 15.21–15.24, in which a discrete
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Fig. 15.25. Magneto-resistance curve for a single 35 nm electrodeposited Co wire,
measured as a function of a field applied parallel to the wire axis. Rsd denotes the
background signal level for a single domain wire. RW denotes the signal level when one
or two domain walls have been nucleated at Hn during the reversal and are stabilized
at pinning sites.

number of isolated head-to-head domain walls can be stabilized separating op-
posite domains. The advantage of such a configuration is that the geometry is
well defined during the reversal process, avoiding other MR contributions which
may mask the DW–MR effect. Indeed, the magnetization M remains parallel or
antiparallel to the current J during the magnetization reversal process, whereas
the domain walls are aligned perpendicular to the current and thus to the mag-
netization. The MR hysteresis loop of a 35 nm Co single wire shown in Fig. 15.25
illustrates the simplicity of this geometry [33]. There are two striking features in
this loop: (i) the background resistance level is almost flat over the field range
measured and (ii) two sharp jumps are visible, one upward at 1.3 kOe followed
by a downward jump at 2.8 kOe. The flat background level indicates as expected
that the magnetization remains parallel to the current J during the whole rever-
sal process, confirming the results of the MFM (Fig. 15.20a) observations that
the effective easy axis is aligned very close to the wire axis. Since the upward



372 K. Ounadjela et al.

jump appears around the nucleation field value of 1 kOe < Hn < 2 kOe as found
also from MFM experiments, the upward and downward jumps are, respectively,
identified as the nucleation field Hn and the maximum depinning field Hpmax at
which all domain walls are expelled from the wire. From this it follows that the
enhanced signal level in the field range Hn < H < Hpmax can be attributed to
the presence of a finite number of domain walls which nucleate during the rever-
sal and propagate along the wire. Consequently, it is identified as a domain-wall
magnetoresistance (DW–MR).

For all wires measured, the MR ratio for a single wall has a value of
∆Rw/nRsd = 0.1 to 0.3% (n = number of walls). In terms of the resistivity
ratio this would correspond to a huge enhancement of the resistivity ρw of Co
inside the domain wall compared to its resistivity ρsd in the single domain state.
Indeed, taking as the relevant length scale the domain-wall width δw = 10 to
15 nm and lCo = 20 µm for the length of the Co wire, one obtains a resistivity
ratio of ∆ρw/ρsd = ∆Rw/nRsd(lCo/δw) = 100% to 600%. Such a large resistance
enhancement in the presence of a domain wall has initiated further studies of
spin-dependent transport in chemically homogeneous structures supporting
an in-homogeneous magnetic structure. In the current development of spin
electronic devices, this effect may find potential applications with the domain
wall as the parameter of control. This is a nice example for the importance
of the prediction and understanding of the local micromagnetic structure in
confined systems.

15.9 Summary

This chapter has reviewed an extensive study performed on the micromagnetic
configurations in mesoscopic system and the influence of shape and size. After
a short overview and summary on nanofabrication techniques [28] and mag-
netic force microscopy imaging [46,47,51,52,53], the first part of the chapter was
dedicated to the stripe-domain formation with domain sizes below 100 nm in
Co(0001) thin films of large perpendicular anisotropy [67,68]. For the square
magnetic Co(0001) dots fabricated from such films the influence of shape and
size was discussed [29,38]. Domain configurations such as concentric rings and
spirals have been stabilized, which drastically influence the magnetization rever-
sal process. For dots fabricated in the thickness range below 20 nm and diameters
below 500 nm where the magnetization lies in-plane [74,94], the magnetic con-
figurations to be stabilized are identical to those in soft materials of the same
sizes but zero magnetic anisotropy.

For such in-plane isotropic dots of nanometer extend two configurations exist,
the single domain and the flux-closure state [84]. Their stability is determined by
the balance between the quantum mechanical exchange energy and the classical
magnetostatic energy. Equally important is the key role played by small devia-
tions from uniformity in the demagnetization field which in some cases causes
unexpected anisotropy to appear which can dominate the magnetic properties
[82]. Similar configurations as in the dots are found in circular ring systems [104],
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however, the elimination of the central vortex pushes the transition to the single
domain state to lower diameter values.

It is noted that furthermore quite similar properties were treated in the
literature for elliptical dots [88,89,90,91], where the in-plane shape anisotropy is
an additional parameter that influences the presence of different configurations.

As an example of 1D systems, magnetic wires fabricated from epitaxial
Co(1010) films with strong in-plane uniaxial anisotropy have been considered in
this chapter [41]. The lowest energy states of these wires depend on the strength
and character of its anisotropy. For the orientation of the uniaxial anisotropy
perpendicular to the wire axis, regular stripe-domain patterns become ener-
getically favorable, in analogy to the stripe domain-structure reported for the
out-of-plane perpendicular Co(0001) films. A qualitative phase diagram as a
function of thickness and wire width for the transition from the stripe domain
into the single domain state has been deduced experimentally and compared to
simple calculations using Kittel’s domain theory [61]. This diagram will serve as
a guide, since a rigorous treatment for the different configurations of this geom-
etry requires intensive numerical micromagnetic modeling. As a last example at
the end of the chapter, the case of crystal anisotropy oriented along the wire axis
is discussed. We show that uniformly magnetized states prevail [33]. In certain
conditions, a discrete number of walls can be induced in the nanostructures serv-
ing as a model system for the study of the resistance associated to the presence
of a domain wall. These experiments underline the importance of the prediction
and understanding of the local micromagnetic structure in confined systems.

15.10 Conclusion

Progress in nanofabrication, imaging techniques and micromagnetic modelling
give new insight into the physics of nanostructured magnetic material. For the
first time, we are able to compare experiments on the magnetization reversal,
stable and metastable states, confinement of domains in laterally constrained
structures to those predicted from numerical micromagnetic modeling. A large
number of groups have contributed recently in this new field of mesoscopic sys-
tems. This combination of individual experience has facilitated and increased the
possibility of creating a knowledge base for these novel magnetic structures never
studied before. In order to achieve this, emphasis has been put on the fabrica-
tion of nanostructures of magnetic materials and the analysis of their respective
magnetic and electrical properties. New preparation techniques have been devel-
oped and magnetic characterization techniques have been refined. Furthermore,
the various types of systems are investigated with respect to their potential for
controllable nanoscale design. This has helped to develop a better understand-
ing of the different energetic contributions involved in systems with reduced
dimensions. The prospective future applications of magnetic elements such as
spin electronic devices, which control the resistance through a precise control of
magnetic configurations, gives an additional drive to this field. For instance, in-
tegrated magnetoelectronic architecture is a moving target for the next dynamic
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RAM generation. In order to stay in the ballpark it must anticipate an achieve-
ment of magnetic cells with a minimum feature size of 0.1 µm and an area of
0.06 µm2 incorporating a reliable and reproducible magnetization switching on
a time scale a few years to challenge the existing paradigm for main memory.
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38. K. Ounadjela, M. Hehn and R. Ferré, “Domain confinement in mesoscopic eptitax-

ial cobalt patches”, in “Magnetic hysteresis in novel magnetic materials”, edited
by G. Hadjipanayis, Kluwer Academic Publishers, 485 (1997).
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16.1 How Can We Go from Magnetic Layers
to Submicron Scale Devices?

This chapter is intended to give readers a brief overview of the numerous tech-
niques involved in the fabrication of small magnetic devices.
Until recently there has been a wide distinction between semi-conductor en-

gineering and metallic and magnetic devices fabrication, the main reason being
due to the huge investments in terms of money and manpower devoted to semi-
conductors rather than real technical limitations. With the advent of spin elec-
tronics, the number of metal and magnetic devices are increasing and in some
instances, semiconductor and magnetic device fabrication have started to merge
and are currently the topic of intensive research in some areas (e.g. in MRAMs).
In the future it is anticipated, that metal and magnetic devices will be further
employed at an accelerated pace in the electronics and computing sectors due to
their inherent advantages, e.g. smaller, faster, more powerful non-volatile mem-
ories.
The construction of a magnetic device, like the fabrication of a semiconduc-

tor device consists of a succession of different steps, the deposition of layers,
lithography (pattern generation), etching, oxidation and planarisation. However
in semiconductors, there’s an additional step, the doping of the semiconductor.
Conventionally it is not used in metallic and magnetic devices, even though it
is now possible to use ion beams to directly modify the magnetic properties [1].
For example a complete device like a read head requires more than 100 different
steps and consequently the size of the wafers used for fabrication has tended to
increase, so conventionally six inches wafers are used for fabricating read heads.
In the laboratory, prototype devices are usually made with typically ten or

less steps and have smaller dimensions, the less the number of steps, the greater
the probability a device will work!! Furthermore, in research laboratories the
preferred tool for the pattern generation is mainly e-beam lithography which
is rarely used in industry as its considered to be too expensive and too slow.
This type of lithography has the advantage over orthodox techniques as its very
versatile but its limited to small sample sizes.
Thus in this chapter, I will focus on a “laboratory” approach to the building

of small magnetic devices.

M.J. Thornton and M. Ziese (Eds.): LNP 569, pp. 379–395, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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16.2 Basic Processes

In this section I will describe the “standard” processes necessary to build a simple
device and give a brief description of each fabrication step. There are a number
of excellent text books [2,5] available and for a more detailed description of the
fabrication procedures the reader is referred to these texts for further details.
The basic processes are widely used to fabricate a patterned magnetic layer

(or magnetic multilayer) such as an array of dots or lines [6,7,8,9,10,11] or more
sophisticated shapes. This can be, for example the patterning a hard disk surface
creating dot arrays for magnetic storage.

16.2.1 Standard Patterning

Standard patterning consists of six basic steps:
This process is used when it is possible or necessary to deposit the mag-

netic layer first, e.g. for epitaxially grown magnetic films or when the growth
of the films can only be done under external constraints (high temperature for
example).
The standard patterning technique has a number of drawbacks: since it etches

the magnetic layer, it is usually difficult to characterize the magnetic properties
of small magnetic objects in addition the etching process may create defects on
the surface or a heating of the layer.
Thus if the magnetic layer can be deposited at a rather low temperature then

a lift off technique may be a much better solution.

16.2.2 Lift–Off Patterning

The lift off technique is very simple providing the deposition does not require
a high temperature. It is also important to note that the surface of the wafer
cannot be very clean (due to water and oxygen absorption etc.), hence if thick
magnetic layers are being deposited (> 1 µm for photolithography and 200 nm
for e-beam lithography), they may be difficult to lift off from the resist.
Also if the material is deposition by sputtering, the resist may be damaged

by the plasma irradiation, additionally in high pressure deposition, the magnetic
metal is deposited everywhere, even on the edges of the resist which makes the lift
off extremely difficult. Evaporation or electro-deposition are the best deposition
techniques when using a lift off process.

16.3 Deposition Techniques

Deposition techniques can be divided into three main groups:
– Physical Vapor Deposition (PVD) including evaporation and sputtering.
– Chemical Vapor Deposition (CVD) and Plasma Assisted Chemical Vapor

Deposition (PACVD).
and
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1) Preparation of the wafer.

2) Layer deposition. The magnetic layer or multilayer is deposited of the surface of a clean wafer.
An overview of the different deposition techniques is given later on in Sect. 16.3.

3) Resist deposition. The choice of the resist depends on the kind of lithography used (see Sect. 16.4).

4) Lithography : resist exposure and development. The resist is patterned.

5) Etching film. This is usually the critical step in the fabrication : the transfer of the pattern to the 
metallic layer

6) Lift off of the resist.

Fig. 16.1. The stages involved in “standard” patterning.
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1) Clean wafer.

2) Resist deposition. 

3) Lithography : resist exposure and development.

4) Metal deposition.

5) Lift off resist.

Fig. 16.2. The stages involved in lift off patterning.
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– Electro-deposition.
It would be impossible to give here an extensive description of each technique,

so once again the reader is referred to the text books [3,4] for further details.
Since the effectiveness of the resulting lithography, is incontrovertibly linked

to the depositing technique used, I will use shape anisotropy, as the criterion to
separate and define the deposition techniques.
Some deposition techniques like evaporation at very low pressures are

strongly anisotropic and produces a good pattern transfer in the lift off process.
Sputtering at high pressures is rarely used for a lift off process due to the
greater isotropic deposition of the metal, thus it is then very difficult for the
solvent to dissolve the resist. In addition as already mentioned above, splutter
depositioning creates a high level of radiation. This radiation burns the resist,
which likewise makes the removal of the resist extremely difficult, as usually
plasma deposition hardens the resist. Since the dissolution of the resist is nearly
impossible, it’s necessary to plasma clean the sample using O2.
Electro-deposition is a nice alternative deposition technique, since the de-

position only occurs where it is necessary (by masking the electrodes). Electro-
deposition does not cause damage or adhere strongly to the resist, but the opera-
tion of the electro-depositing baths is a very complicated technique. The skilled
usage of the baths is very much a black art (for example for some materials
adding saccharine to the bath aids the electro-depositing) and it may takes a
user a while to obtain good electro-deposited layers. For devices, like read heads
this technique is becoming increasingly popular due to the corresponding low
cost in investment and production. Electro-deposition can be also used to pro-
duce very thin magnetic wires by deposition through membranes [12].

16.4 Resist Deposition

16.4.1 The Resists

Resists are made with polymers sensitive to radiation of some kind and they fall
into two categories:
i) Positive resists: where there is a removal of the resist exposed to radiation

and
ii) Negative resists: where there is a removal of the unexposed resist.
The irradiation breaks up the polymer network which then dissolves with

an appropriate solvent. According to the type of lithography performed different
resists are required so:

For UV lithography : A photoresist is composed of a base resist+photoactive
compound+solvent. Positive and negative photoresists with their developers are
available commercially.

For electron and X-ray lithography: A PMMA (polymethyl-meta-acrylate) or
MAA (meta-acrylate acid) polymers dissolved in a solvent can be used for the
resist. These resists can be home made and easily made in large quantities.
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16.4.2 Resist Deposition

The most important step before the resist deposition is the cleaning of the sub-
strate (+ layers), since the cleanliness of the substrate is so important resist
deposition should be done in a clean room.
The resist is liquid and deposited on the sample, the sample is spun with

typical speeds of 3000 to 6000 RPM with the resultant resist film thickness of
course depending on the speed and on the viscosity of the resist. For best results
the substrate is first spun at low speed and then given a final spin at high speed.
The shape of the substrate also determines the homogeneity of the resist

film, so for example on a rectangular sample, the resist film is not perfectly
homogeneous due to strain deformation at the edges of the substrate. Thus
using a circular substrate gives the best homogenous resist film.
After deposition, the resist is baked to evaporate the solvent, with the baking

time and temperature strongly dependent on the resist type.

16.5 Pattern Generation

Lithography can be divided in two different types, lithography using a mask
and direct write lithography. Industrial processes use masks and mainly UV
lithography and in the laboratories, e-beam lithography is often used due to its
versatility and its resolution.

16.5.1 Lithography Through a Mask

Mask lithography is usually done with coherent light sources. The wavelength
of the radiation used is between 0.436 µm (mercury G-line) and 0.157 µm (F2
laser) for UV light. In the case of X-ray lithography, the wavelength is about
1 nm [13,14]. Of course the radiation wavelength determines the resolution of
the technique, creating a pattern smaller than the wavelength is usually very
difficult because of diffraction effects.
Lithography can be done either with the mask as close as possible to the

substrate (contact lithography) or through an optical system, which allows a
reduction of the mask pattern onto the substrate (projection lithography), see
Fig. 16.3.
Contact lithography allows us to go below the wavelength limit by using

the fact that light creates an evanescent wave through a hole smaller than the
wavelength, but the distance between the sample and the mask must be very
precise.

UV Photolithography UV lithography is the easiest and cheapest way to pro-
duce large quantities of submicron magnetic systems. The best photolithography
systems give resolutions of 0.25 µm and recently 0.18 µm has been obtained, the
ultimate resolution of UV lithography is considered to be 0.1 µm. The resolution
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Lenses system

(a) (b)

Fig. 16.3. The two types optical lithography (a) contact lithography and (b) projection
lithography.

is limited by diffraction effects due to the distance between the mask and the
sample. On cheap systems in a laboratory the resolution limit is about 0.5 µm.
The masks for UV lithography are made of chromium on glass and built

using e-beam lithography and can be easily obtained commercially in any size.

Electronic and Ion Beam Projection Lithography Using large electron
or ion sources, it is possible to pattern layers down to 100 nm, for example the
SCALPEL, (SCattering with Angular Limitation Projection E-beam Lithogra-
phy), approach combine high resolution with the throughput of a parallel pro-
jection system [15]. With ion projection lithography, 50 nm wide lines have been
produced [16].

X-ray Lithography Soft X-rays with a wavelength of about 1 nm can be
obtained from a synchrotron source, for example the synchrotron at Lure, Orsay
has a beamline devoted to this application [14]. Due to the absence of efficient
optics in this light regime, X-ray lithography is always a contact lithography.
The difficulty of mask fabrication is the main problem, with X-ray lithography
since most materials absorb at these energies. This problem is circumvented by
making the mask from tungsten or gold on a thin (100 nm) carbon, silicon nitride
or capton films. Access to cheap, high flux X-ray sources and the difficulties
associated with masks fabrication limits X-ray usage.

16.5.2 Direct Writing

For direct exposure of the resist, a collimated beam can be used. This technique
is much slower than lithography through a mask but it gives the allows mask
fabrication and produces original patterns at a reduced price. The direct writing
radiation can be a laser at a rather low wavelength or an e-beam.
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Table 16.1. Correction factors for calculating the resistance per square for a circle
and a rectangular sample

Resist minimum aspect dose at Mechanism

linewidth ratio 100keV(C/cm2)

PMMA 8–10 nm 45 5×10−4 Bond breaking

NaCl 1.5 nm > 40 102–103 Dissociation

AlF2 1.5 nm > 40 1–10 Diffusion of Al,

Dissociation of AlF2

Laser Photolithography

• Direct laser writing. This is used for low resolution masks e.g. masks for printed
circuits for electronics.

• Holographic lithography. Two laser beams interfere and produce standing
waves, grating periods approaching 50% of the laser wavelength can be
obtained [17,18,19]. This is a convenient way to create gratings or large arrays
of magnetic lines and dots.

E–Beam Lithography A scanning electron beam controlled by a computer
is used to directly write the pattern. The e-beam main advantage is the high
radiation damage it creates and its very short wavelength (less than 0.1 nm). A
large variety of “resists” can be used, for example standard resists like PMMA
can be deposited. The effect of the radiation breaks polymer bonds and thus en-
hances the dissolution effect by an appropriate solvent. The resolution is mainly
given by the size of the polymer. It is also possible to use layers which can be
destroyed by the e-beam. Table 16.1 gives some examples.
With PMMA, the resolution in a standard process is about 20–50 nm, de-

pending on the magnetic material. The resolution limit is due to secondary
electron creation, electrons are absorbed or scattered in the material and when
they back scatter, then they irradiate the resist and the effective resolution is
lowered.
There are several ways to partially solve this problem.
The first technique is to deposit a very thin resist layer like a Langmuir–

Blodgett monolayer onto the sample, thus the resolution limit is determined by
the resulting etching after the lithography. With this technique the contrast is
very poor and so its only used in special circumstances.
A second technique uses a crystal modified by dissociation or diffusion for

example a salt. Lithography in the nanometer range can be performed, but this
type of lithography requires a high energy and long exposition time. Furthermore,
the size of the grains must be smaller than about 150–200 nm.
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Fig. 16.4. Schematic diagram of e-beam lithography.

In Saclay, we currently use a third method the trilayer process which I will
now briefly detail, the advantage of this technique is that it only uses standard
processes.

16.5.3 Trilayer Technique

The idea is to use a thin germanium or titanium film as a suspended mask on
the sample [20,21].
Thus a well defined metallic mask is obtained. This technique of tri-layer

deposition allows us to carry out angular deposition (or shadow evaporation), see
Fig. 16.6. Angular deposition has now become common place and its a convenient
way to make nanostructures, such as junctions between two different materials
(as used in squids) or devices. By evaporating two different metals at different
angles through the same suspended mask, the same pattern at different locations
can be obtained. By playing with the shape of the suspended mask an overlap
of two kind of material can be created.

16.6 Etching of the Layers

The etching of the layers is a critical point in building a device. The etching
must correctly transfer the designed pattern. In this section I will give a very
brief summary of the various techniques used to transfer a pattern.

16.6.1 Wet Etching

Wet etching is material dependent and its the simplest way to etch a device.
There are a large number of solutions for selective etching commercially available.
Table 16.2 gives some examples.
Wet etching has a low final resolution and a rather poor etching homogeneity.

The etching speed strongly depends on the layer crystalline structure, so with
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1) Deposition of MAA, PMMA Germanium and PMMA layers.

2) Lithography of the first PMMA layer by e-beam and development. Etching of the Germanium layer 
by reactive ion etching.

3) Reactive ion etching of the resists underlayers by reactive ion etching.

4) Deposition of a metallic mask through the germanium suspended mask.

5) Lift off resists.

PMMA

Germanium 

PMMA

MAA

Fig. 16.5. Stages involved in the tri-layer technique.
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Fig. 16.6. Schematic diagram of the shadow evaporation technique.

Side view

Top view :

Fig. 16.7. Schematic diagram of the shadow evaporation technique viewed from the
top and bottom .
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Table 16.2. A list of materials and their etchent chemicals.

Material etched by

Au KI–I2

SiO2 HF

Cu FeCl3

Si KOH(80◦C)

Fig. 16.8. Example of the isotropic nature of wet etching

textured samples, a rather homogeneous etch can be obtained but in polycrys-
talline films, a large difference can be observed. Wet etching is usually isotropic
and its not possible to transfer a pattern with a high aspect ratio.
However, in some cases special aspects can be obtained. For example, the

etching of silicon by KOH depends on the crystalline orientation. The (111) face
is etched at a slower rate than the (100) or (110) planes, so very flat edges can
be produced by choosing an appropriate crystal orientation [22].

16.6.2 Ion Beam Etching–Ion Milling [3,23]

Ion beam etching (IBE) produces ions in a cavity and then accelerate them to
create a relatively intense and homogeneous beam. The ions are usually Ar+ but
oxygen or additional gas may be used. Typically the size of commercial sources
vary from 2.5cm to 20cm and the ion energy is about a few hundreds of eV. The
etching is anisotropic and hence can be used for a good transfer with high aspect
ratios, with the speed of etching depends on the material type.
There is only a small dependence on the crystallinity of the material but the

incidence of the beam is very important. The etching is maximum perpendicular
to the sample and decreases to zero at grazing angle. For this reason IBE can
be used to planarisation a sample.
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Table 16.3. A list of materials and their reactive ion etchent gases

gas material it etches

SF6 Si, SiO2

CF4 Si, SiO2, Si3N4, Ti, Mo, Ta, W

CClF3 Au, Ti

CBrF3 Ti, Pt

CCl4 Al, Cr

(a)

500 nm

(b)

Fig. 16.9. (a) Tunnel junction fabricated by shadow evaporation, e-beam lithography
and reactive ion etching. (b) enhanced view of the junction with typical dimensions
200 nm long ×15 nm wide. (courtesy of Ivan Petej, Clarendon Laboratory, Oxford
University)

16.6.3 Reactive Ion Etching

Reactive ion etching (RIE) consists of creating a plasma with different types of
gas in order to combine ion beam milling and chemical reaction, this type of
etching can then be made more selective than a classical IBE.
If the sample is very close to the plasma, the etching is rapid and isotropic

otherwise it becomes anisotropic and slow. The speed of etching varies from 0–
1000 nm/minute depending of the material, gas pressure and crystalline struc-
ture. Table 16.3 list several gases commonly used in reactive ion etchers.

16.6.4 Focused Ion Beam (FIB) Etching

Since the focused ion beam (FIB) is a relatively new tool to the research com-
munity I will detail how it works and then expand on how it may be used to
fabricate nanodevices.
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The focused ion beam as its name implies, is basically a scanning electron
microscope (SEM) which uses ions instead of electrons. The FIB has been avail-
able commercially for the last decade and has become a very popular tool for
nanofabrication research because of its very versatile nature.
The ion source is generally a liquid metal source such as Ga (alternatively Be,

Ar or He may be used) and the beam is extracted and ionised by a strong electric
field applied to the tungsten injector needle. The ionised beam is then focused by
electrostatic lenses and collimated with the aid of an aperture (which selects the
beam current), the ionised beam then strikes the substrate emitting secondary
electrons and ions, which can then be used to generate an image of the surface.
Generally a FIB uses the secondary electrons to image the substrate as they
are emitted in greater quantities and hence provided a greater image contrast.
The contrast depends on material and topography, since an insulator emits less
secondary electrons than a conductor the insulator regions appear bright and
the conductive regions appear dark. Beam energy is typically 30 or 50 keV with
the beam current in the range of 1pA–20 nA the best image resolution is about
10 nm.
Ion milling (and thus lithography see Fig. 16.10) can be additionally per-

formed by the FIB with supplemental gases, injected by needles near the area
of interest. During the gas assisted process the gas is adsorbed onto the surface,
where it is broken down by the ion beam to produce volatile compounds that are
pumped away, thus the local etching can be material dependent so only a metal,
insulator or carbon based compound is etched. In a similar process the FIB can
deposit metals such as platinum and tungsten and silicon oxide layers. To do
this the beam parameters and the gas flow is optimised for the most efficient
equilibrium between the breaking of the precursor gas and the milling action of
the beam [27,28,29].
A FIB has conventionally been used in semiconductor failure analysis by

making TEM cross-sections in the region of interest and for modifying tracks on
prototype chips. However it may be used to do chemical analysis in a local region
if used in combination with a secondary ion mass spectrometer. If a FIB has a
secondary electron column – a dual beam FIB, then it has the colossal advantage
of observing the device during etching (observing the etch while milling can also
be done by the singe beam FIB, but there will be a small level of implantation
[24,25,26]). Like the standard FIB, a dual beam FIB can also perform chemical
analysis locally on the device by energy dispersive x-ray spectroscopy.
In some nanodevices the ion implantation by the ionised beam may cause

problems, for example, in high-Tc films, ion implantation due to migration is
present on distances of 300–400 nm and then the superconducting properties are
modified on that scale.

16.7 Additional Techniques

Finally I will conclude this chapter with a brief description of unconventional
techniques used to patterning magnetic thin films.
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Fig. 16.10. Lithography performed with FIB which has defined the base and collector
contacts of a magnetic field dependent transistor (Courtesy of Ivan Petej, Clarendon
Laboratory, Oxford University).

16.7.1 AFM–STM Lithography

Mechanical Lithography [30] The principle is to etch mechanically a thin
layer of resist by the tip of an AFM (Atomic Force Microscope) on a three layer
deposited system. The tip is used to mechanically design the pattern.
First an image is stored and after, the tip pushed in the layer at the right

place and moved. This technique can be used to fabricate very thin wires at the
end of a lithographic process.
The advantage of this approach is the high achievable resolution, about

20 nm, and the possibility of visualization before the patterning. But it is conve-
nient only for a small amount of very small objects like lines and the life of the
tip is rather short. It is possible to avoid this last problem by using a tip made
with a very small diamond crystal but with a loss in resolution.

Electrical Lithography A tip can also be used to apply locally an electrical
pulse to destroy a resist on the surface. The advantage of that technique is a
very precise lithography. But the resist must be very thin and then the transfer
to the metallic layer is not obvious.
In presence of gas, an electrical pulse can help to deposit atoms on the surface.

Then a metallic mask can be created.

Arrays of Scanning Probes Arrays using 50 SPMs have been fabricated [31]
in order to perform patterning of large surfaces.
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16.7.2 Chemical Transfer, Nanoimprint

There are two main techniques in chemical transfer and nanoimprinting they are:
imprinting and inking. In imprinting, a reusable mold is stamped at high pressure
into a polymer film on a substrate and removed. In inking, molecules which have
an affinity for one metal and not the surface will wet only the corresponding
metal. A “stamp” is prepared and immersed in a “inking” solution. Then, we
have just to press the corresponding stamp on a surface where the liquid react
to transfer the pattern of the stamp. The transfer of the pattern is surprisingly
good and resolution better than 100 nm can be achieved [32]. With imprinting,
6 nm hole and 15 nm trenches have been obtained in PMMA [33]. This is a very
cheap alternative to e-beam lithography.
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17 Spin Transport in Semiconductors

M. Ziese

Department of Superconductivity and Magnetism, University of Leipzig,
Linnéstrasse 5, 04103 Leipzig, Germany

17.1 Introduction

Recent months have seen a startling activity and a rapid development in the
area of spin-coherent transport in semiconductors. This research is driven by the
need for integration of spin-electronic devices into conventional semiconductor
technology. Devices based on spin-dependent effects such as read heads for hard
disks or non-volatile magnetic random access memory (MRAM) had (and are
supposed to have in the near future) a strong impact on storage technology
[1,2]. These areas, however, are well separated from standard Si technology and,
although these are highly market relevant, a new approach has to be developed
in order to transfer the benefits of spin-electronics into MOSFET technology.

Historically, the idea of spin-injection into semiconductors was first proposed
during the early seventies in the context of tunnelling studies using ferromagnetic
electrodes [3]. A theoretical account of spin-injection from a ferromagnet into
a semiconductor was given by Aronov and Pikus by calculating the spatially
decaying polarization of majority and minority carriers [4]. Alvarado and Renaud
successfully observed vacuum tunnelling of spin-polarized electrons from a Ni
tip into GaAs [5]. The spin-polarization was determined from the polarization
of the emitted radiation and a negative value of about −30% was found at
small injection energies. This early experiment proved that spin injection into
semiconductors is possible; the negative spin-polarization indicates that minority
3d electrons are preferentially emitted from the Ni tip. Further tunnelling studies
with semiconducting barriers were conducted by Prins et al. [6].

The problem of spin-coherent transport in semiconductors can be conve-
niently split into three issues: the investigation of spin-coherence effects within
the semiconductor, spin-injection into the semiconductor from the outside world
and detection of a spin-polarized current. The first problem is mainly addressed
with ultra-fast optical spectroscopy techniques and will be discussed later. Cur-
rently two spin-injection methods are investigated, namely injection of spin-
polarized carriers from a metallic ferromagnetic electrode or through a ferromag-
netic semiconductor. Whereas the first method seems to be the obvious choice,
results so far have proven to be poor and the second technique might actually
lead to a breakthrough. Some information on magnetic semiconductors can be
found in this volume in M. Coey’s chapter on ‘Materials for Spin Electronics’.
Recent work on ferromagnetic semiconductors has been reviewed by Ohno [7];
an account of early work was given by Methfessel and Mattis [8]; see also various
review articles on diluted magnetic semiconductors in [9]. The methods in use
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to study spin-injection from ferromagnetic electrodes have been pioneered by
Johnson in his investigations of spin-injection and -detection in metals [10,11]
and superconductors [12]. Johnson’s spin-transistor experiment was analyzed in
detail by Fert and Lee [13].

This chapter concludes with a discussion of devices. A great deal of the
present research activity was initiated by the proposal of Datta and Das for a
spin-electronic transistor that is analogous to an electro-optic modulator [14].
In this transistor, spin-polarized electrons are injected into a two-dimensional
electron gas (2DEG) via a ferromagnetic electrode and are analyzed by a fer-
romagnetic detector electrode. The spin direction can be controlled by a gate
voltage through the Rashba effect. This device promised a straightforward route
to a spin-transistor; the experiments, however, are so far disappointing.

17.2 Basics

In this section a simple idealization of spin-injection into semiconductors is dis-
cussed in order to introduce the relevant length scales. The discussion follows
the treatment by Aronov and Pikus [4] slightly modified by recent ideas of Flatté
and Byers [15] on spin diffusion.

The basic length scale relevant for spin-coherent transport processes is the
spin-diffusion length given by

λs =
√

Dsτs , (17.1)

where τs denotes the spin-relaxation time and Ds the spin-diffusion constant.
λs is the average distance a spin can diffuse without losing its spin memory.
The spin-diffusion constant Ds is not necessarily equal to the charge-diffusion
constant D. This is addressed in more detail at the end of this section. There
is experimental evidence, see Sect. 17.3, that the spin-diffusion constant Ds is
considerably larger than D.

Consider the following simple model: a doped semiconductor fills the half-
space x > 0 and spin-polarized carriers are injected into this semiconductor by
some kind of process. The spin-polarization of the injected carriers is given by
P and the current density is denoted by j. The evolution of the spin-density S
in the semiconductor can be calculated from the Bloch equation

∂S

∂t
= S × Ω − S

τs
− ∇ · Js . (17.2)

Ω = gµBB/� is the precession frequency of carriers with gyromagnetic ratio g
around a magnetic field B. µB denotes the Bohr magneton. The second rank
tensor Js denotes the spin-current density. The boundary condition at x = 0 is
given by

Js(x = 0) = q−1 j ⊗ P . (17.3)

Here spin-relaxation effects at the boundary are neglected and P has to be
interpreted as some effective spin-polarization. q is the charge of the carrier.
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Let us first consider majority carriers; in this case recombination processes
can be neglected and the carrier concentration n is independent of the spatial
coordinates and the current. The spin-current density is a sum of drift and
diffusion terms:

Js = v ⊗ S − Ds∇ ⊗ S . (17.4)

The drift velocity is related to the current density by v = j/qn. In the absence of
a magnetic field and for an injected current along the x-axis, the spin-polarization
in the steady state is easily obtained by solving (17.2):

P s(x) =
S

n
=

2λdP
λd +

√
λ2d + 4λ2s

exp
[
− x

2λ2s

(√
λ2d + 4λ2s − λd

)]
. (17.5)

λd = vτs is the drift length. In the case of a non-degenerate superconductor the
ratio of drift and spin-diffusion length is given by λd/λs = qEλs/kBT and can
be high for typical electric fields E. In this regime the spin-polarization in the
semiconductor is simply given by P s(x) = P exp[−x/λd] with the exponential
decay determined by the drift length λd. In the opposite limit, λs � λd, the
exponential decay length is determined by the diffusion length λs; in this case
however, the spin-polarization at the interface is reduced by a factor λd/λs.

In the case of a magnetic field B applied perpendicular to the spin-
polarization P at the surface, the spin-polarization in the semiconductor P s in
the limit λd � λs is given by

P s = P exp [−x/λd]
[
P̂ cos(Ωx/v) + P̂ × Ω̂ sin(Ωx/v)

]
. (17.6)

P̂ and Ω̂ denote unit vectors. The polarization is seen to rotate in a plane
perpendicular to the applied magnetic field.

In the case of minority carriers the diffusion component is greater than the
drift component as long as the minority-carrier density is much smaller than
the majority-carrier density. The Bloch equation (17.2) is valid, when the spin-
relaxation time is replaced by the combined spin-flip and recombination time
τ−1 = τ−1

s + τ−1
r . The minority-carrier density decays exponentially with dis-

tance from the injection point according to

n(x) = λrJ/D exp [−x/λr] , (17.7)

where λr =
√
Dτr is the minority carrier diffusion length. The spin-polarization

in the semiconductor is then given by

P s =
λP

λr
exp

[
−x

(
1
λ

− 1
λr

)]
(17.8)

with the minority carrier spin-diffusion length λ =
√
Dτ .

Flatté and Byers [15] qualitatively studied the motion of charge and spin
packets in undoped and doped semiconductors. Due to the ineffective screening,
a local spin/charge disturbance will in general be a multi-band perturbation.
This is illustrated in Fig. 17.1 for a n-doped semiconductor.
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Fig. 17.1. Schematic picture of the carrier-density distribution in an n-doped semi-
conductor for a local charge (left) or spin (right) disturbance. The ineffective screening
in the semiconductor leads to the formation of hole packets accompanying the electron
packets in a charge disturbance in order to preserve charge neutrality (left). A spin
packet, however, can be entirely formed by disturbances in the conduction band (right
panel). n↑(↓) and p↑(↓) denote the electron and hole densities with the indicated spin
directions, respectively.

In the case of a n-doped semiconductor a charge packet consists of a localized
increase of both electron and hole density. The resulting ambipolar diffusion
constant is given by

D =
nµeDh + pµhDe

nµe + pµh
(17.9)

where µe(h), De(h) are the electron (hole) mobility and diffusion constant, respec-
tively, and n(p) denote the electron (hole) density. Since n � p, the ambipolar
diffusion constant is dominated by hole motion, D ∼ Dh. The spin packet, on
the other hand, consists only of localized electron packets and therefore, the
spin-diffusion constant is given by the electron-diffusion constant, Ds ∼ De.
Accordingly, the spin-relaxation time is given by the electron spin-relaxation
time τs ∼ τs,e � τr � τs,h. This in turn is determined by the Elliot–Yafet
[16,17], D’yakonov–Perel’ [18], Bir–Aronov–Pikus [19] or hot spot [20] mecha-
nism depending on temperature regime and doping. A detailed discussion of
these relaxation mechanisms is beyond the scope of this review. Since the elec-
tron mobility is generally much larger than the hole mobility, one has Ds � D.

In p-doped semiconductors the situation is reversed. In an undoped semi-
conductor both spin and charge packets consist of electron and hole excitations
and the spin and charge diffusivities are of the same order of magnitude; in this
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case τs 	 τr. This simple argument is in qualitative agreement with the doping
dependence of the spin-relaxation time and the strongly enhanced spin-diffusion
constant observed in n-doped GaAs, see Sect. 17.3.

17.3 Spin–Coherent Transport

Spin transport in semiconductors has been investigated with ultra-fast spec-
troscopy techniques. In this method a non-equilibrium spin-population is created
in the conduction band after illumination of the semiconductor with circularly
polarized light, thus bypassing spin-injection via solid-state techniques. The tem-
poral evolution of the induced magnetization can be measured by the detection
of “quantum beats” in the intensity of the photoluminescence with positive and
negative helicities. This, however, is only possible for undoped systems with a
large electron-hole recombination rate. In doped semiconductors the spin pre-
cession is monitored with time-resolved Faraday or Kerr rotation spectroscopy.
When an electric field is applied to the sample the locally created spin density
drifts through the sample. Scanning the probe beam over the sample surface
allows the study of the spatio-temporal evolution of the spin packet; thus deco-
herence effects can be investigated as a function of drift distance and velocity.
In this section a brief introduction to ultra-fast spectroscopy techniques is given
and some recent results on spin-coherence times and lengths are discussed. A
good introductory article on this topic was written by Awschalom and Kikkawa
[21].

In a typical ultrafast spectroscopy experiment the system under study is ex-
cited by a coherent pump beam and then tested by a probe beam applied to the
sample after some time delay t. In the specific case of spin-polarized transport
in semiconductors, a circularly polarized pump beam is directed onto the sam-
ple that excites electrons with well defined spin direction into the conduction
band. These electrons precess around a magnetic field B applied perpendicular
to the path of the probe beam. The time evolution of the magnetization is stud-
ied with linearly polarized radiation in transmission using the Faraday effect or
(in the case of opaque samples) in reflexion using the Kerr effect. The plane of
polarization is rotated by an angle Θ proportional to the projection of the mag-
netization onto the path of the probe beam. This is illustrated in Fig. 17.2. Thus
the time dependence of the Faraday (or Kerr) rotation angle directly reflects the
behaviour of the magnetization.

These experiments are performed with mode-locked Ti:sapphire lasers that
typically have pump and probe pulses of about 100 fs duration. The pump beam
creates a coherent wave packet in the conduction band. The electron spins precess
around the magnetic field with the Larmor frequency gµBB/� and gradually
lose the spin coherence under the influence of spin-spin relaxation processes
characterized by an intrinsic relaxation time τ2 as well as extrinsic processes such
as field inhomogeneities leading to a smaller relaxation time conventionally called
τ∗
2 . These extrinsic properties are often called dephasing. The magnetization
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Fig. 17.2. This figure shows a schematic ultra-fast-spectroscopy setup. A circularly
polarized pump beam excites electrons in the semiconductor with defined spin direction
that precess around a magnetic field applied in the plane of the sample. The Faraday
effect leads to the rotation of the linear polarization of the probe beam by an angle
Θ proportional to the magnetization component parallel to the probe-beam path. The
time evolution of the Faraday rotation angle is measured by varying the delay time
between pump and probe; a typical variation is shown.

therefore performs an exponentially decaying oscillation:

M ∝ Θ ∝ exp [−t/τ∗
2 ] cos [gµBBt/�] . (17.10)

Kikkawa et al. [22] and Kikkawa and Awschalom [23] investigated the spin
relaxation in semiconductor quantum wells and bulk crystals using Kerr and
Faraday rotation techniques, respectively. The quantum well was fabricated from
a Zn1−xCdxSe II-VI semiconductor sandwiched between ZnSe layers grown on
GaAs substrates. Electron-doped samples with typical sheet densities of n✷ ∼
5 × 1011 cm−2, mobilities µ ∼ 2700 − 7900 cm2/Vs and g factors g ∼ 1.1 as well
as an undoped sample were investigated. In this system the hole spins are fixed
along the quantum well growth direction by the spin-orbit coupling; therefore,
only the electron spins are precessing about the magnetic field. Kerr microscopy
at 5 K and 4 T revealed the decay of the net magnetization in the doped quantum
wells with two different lifetimes: at times shorter than 100 ps a fast decay was
observed followed by a much slower decay over several nanoseconds. In contrast,
the insulating undoped sample showed a rapid decay of the spin density within
about 15 ps. The hole lifetime was determined to 50 ps by photoluminescence.
The astonishingly large relaxation times in the doped samples were attributed to
the absence of electron-hole recombination for times longer than 100 ps. The first
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rapid decay is due to this relaxation channel, but electrons from the conduction
band Fermi sea neutralize most of the holes leaving a slowly dephasing spin
density at longer times. This long time decay was found to be only weakly
affected by temperature and even at room temperature clear “quantum beats”
could be seen.

The spin relaxation measured in Si doped GaAs single crystals as a function
of doping shows a similar behaviour. Kikkawa and Awschalom [23] studied an
undoped crystal and crystals with dopings n = 1016, 1018, 5 × 1018 cm−3. Fara-
day rotation spectroscopy was performed at low excitation densities of about
nex = 2 × 1014, 1.4 × 1015, 3 × 1015 cm−3 in case of the doped crystals and
nex = 1014 cm−3 in case of the undoped crystal. The relaxation times were
found to rise sharply at low dopings in agreement with the results on quantum
wells; at higher dopings, however, a gradual decrease was detected. Kikkawa and
Awschalom used “resonant spin amplification” in order to measure relaxation
times of several nanoseconds. In this technique the time delay is fixed at some
value and the spin precession is measured as a function of magnetic field. The
repeated pulsing produces a spin-density amplification, if the magnetic field ful-
fils a resonance condition, thus producing a series of narrow resonance maxima
in a magnetic field sweep. From the half-width the spin-relaxation time τ∗

2 can
be determined. At a doping of 1016 cm−3 this is found to decrease with mag-
netic field, temperature and excitation density nex. At low temperatures and
zero field, values of 100 ns were obtained.

M
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time

 Decoherence
 Dephasing

Fig. 17.3. Ultrafast spectroscopy measurements of the Faraday rotation angle in semi-
conductors reveal the Larmor precession of electrons around the applied magnetic field.
The net magnetization decays due to spin-spin relaxation processes leading to a deco-
herence of the spin density as shown by the solid line. Other processes such as field
inhomogeneities cause an additional dephasing indicated by the dotted line that is
experimentally measured.
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Fig. 17.4. Spin packets injected into a Si doped GaAs crystal by optical pumping at
regular intervals of about 13 ns as a function of distance from the injection point. The
spin density is subjected to an applied electric field of −37 V/m leading to a lateral
drift. The temporal exponential decay causes a spatial decay along the drift direction.
The spin transport over distances exceeding 100 µm, however, can clearly be observed.
For comparison the zero bias spin packets are shown on the left, displaced by -36 µm
for clarity. After Kikkawa and Awschalom [24].

These extraordinary long spin-relaxation times in electron-doped semicon-
ductors form the basis for the investigation of spin-coherent transport. This was
addressed in recent work by Kikkawa and Awschalom [24] as well as Hägele
et al. [25]. In these experiments, the spin-coherent wave packets were dragged
through the semiconductor by the application of an electric field and the spin-
polarization was measured as a function of distance from the injection point.
Kikkawa and Awschalom used a Si doped GaAs crystal with a carrier density
of 1016 cm−3 and applied an electric field parallel to the magnetic field. Scan-
ning the probe beam over the sample with a resolution of 18 µm yielded data
on the spatio-temporal evolution of the spin density. The spin-polarization at
5 K of ten wave packets dragged by an electric field of −37 V/m through the
sample is shown as a function of distance from the injection point in Fig. 17.4.
This illustration clearly shows that spin transport is observable over distances
exceeding 100 µm. The temporal decay of the spin-polarization leads to a spatial
decay along the drift direction. An analysis of the broadening of the spin packets
yielded a spin-diffusion constant Ds exceeding the charge-diffusion constant D
by more than one order of magnitude. This suggests that spin transport involves
both electron diffusion as well as pure spin diffusion. The results of Hägele et
al. [25] indicated no significant spin dephasing in GaAs at low temperatures for
transport over 4 µm in electric fields up to 6 kV/m in qualitative agreement with
Kikkawa’s and Awschalom’s results.
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17.4 Spin–Injection

17.4.1 Ferromagnetic Metallic Electrodes

The studies of spin-injection using ferromagnetic metallic electrodes fall into two
broad classes: investigations of a single ferromagnet/semiconductor interface or
studies of the Datta and Das spin-transistor. The latter will be discussed in
Sect. 17.6.1; here the results of Hirohata et al. [26] on a permalloy/GaAs interface
and of Hammar et al. [27] on the interface resistance between permalloy and an
InAs 2DEG are discussed.
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Fig. 17.5. The left panel shows a cross-sectional view of the ferromag-
net/semiconductor device. An electron-doped InAs 2DEG is grown on a GaAs substrate
buffered with a AlSb layer. After defining a mesa structure, the 2DEG is contacted with
an e-beam deposited permalloy (Py: Ni80Fe20) layer. The interface resistance between
the permalloy strip and the 2DEG is measured in the standard cross-strip geometry
as indicated on the bottom left. In the right panel the response to a magnetic field is
presented. (a) The interface resistance Ri is shown as a function of magnetic field along
ŷ for a current along x̂. Ri is independent of temperature in the range between 75 K
and 296 K. Panel (b) shows the magnetization in arbitrary units at room temperature
as a function of magnetic field. The coercive field of 3.5 mT corresponds well with the
magnetic field dependent change in the interface resistance. (c) The interface resistance
proves independent of field when both current and field are applied along x̂. (d) If the
direction of the current is reversed from x̂ to −x̂, Ri changes polarity. The magnetic
field is again applied along ±ŷ. After Hammar et al. [27].
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Hammar et al. [27] investigated the interface resistance between a permalloy
electrode and an InAs 2DEG. In general, spin-coherent transport between mate-
rials with different spin-polarization is thought to lead to a spin-coupled interface
resistance induced by the spin-dependent chemical potentials [28]; therefore, the
study of the interface resistance as a function of relative spin-polarization might
provide clues to spin-injection. The spin-degeneracy in a 2DEG is lifted due to
the Rashba effect [29]. The perpendidular electric field created by the band-gap
mismatch in the quantum well transforms into a magnetic field acting on the
spin in the rest frame of the charge carrier. The resultant spin-orbit Hamiltonian
is given by

Hso = α [σ × k] · ẑ (17.11)

where α denotes the spin-orbit coupling parameter, σ the Pauli spin-operator,
k the wave vector and ẑ a unit vector perpendicular to the 2DEG. This spin-
orbit effect leads to a spin-polarization of the 2DEG that can be inferred from
studies of Shubnikov-de Haas oscillations; for InAs/GaSb quantum wells a zero
field splitting of about 3.5 meV was reported [30].

Hammar et al. [27] investigated InAs/GaSb quantum wells grown on a GaAs
substrate by molecular beam epitaxy. The carrier density and mobility at 296 K
(77 K) were determined from Hall effect measurements to 1.5 × 1012 cm−2

(9.0 × 1011 cm−2) and 23500 cm2/Vs (63500 cm2/Vs), respectively. A mesa
structure was patterned into the 2DEG using optical lithography and ion-beam
milling. Subsequently a permalloy (Py: Ni80Fe20) layer was e-beam deposited. A
schematic cross-sectional view of the structure is shown in Fig. 17.5 (left panel).
The interface resistance between the 2DEG and the permalloy electrode was mea-
sured in a conventional cross-strip geometry as indicated in Fig. 17.5, bottom left.
The interface resistance was in the range 20-110 Ω for temperatures between 75 K
and 295 K. The response to a magnetic field is shown in Fig. 17.5, right panel;
these measurements were performed in a regime of linear current-voltage char-
acteristics. Panel (b) shows a magnetization hysteresis loop with the magnetic
field applied along ±ŷ recorded at room temperature yielding a coercive field of
3.5 mT. The field dependent interface resistance ∆Ri/Ri = (Ri − 〈Ri〉)/〈Ri〉 is
shown in (a) with the current along the +x̂ direction and the magnetic field along
±ŷ. A distinctive, temperature independent change of the interface resistance is
seen at the coercive field. In this field orientation, the spin-polarization within
both the permalloy electrode and the 2DEG are along ±ŷ. If the magnetic field
is applied along ±x̂ leading to a spin-orientation in the ferromagnetic electrode
along ±x̂, a null effect is seen (panel (c)). If the current direction is reversed,
the spin-polarization in the 2DEG changes sign according to (17.11) and, corre-
spondingly, the interface-resistance change is reversed as shown in panel (d). In
conclusion, all these features are consistent with a spin-coupled interface resis-
tance due to spin-injection from the permalloy into the 2DEG. The magnitude
of the effect, however, is small about 0.9%. The null result shown in panel (c)
seems to rule out spurious effects due to a Hall voltage induced by the stray
fields of the electrodes.
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The interpretation of the interface resistance is not straightforward, since
it depends on a variety of parameters such as the spin-diffusion lengths in the
2DEG and the ferromagnet as well as the barrier transparency. The data re-
produced here were interpreted by Hammar et al. within a model developed by
Johnson [32]. This, however, might be flawed, since certain assumptions are in
contradiction with transport theory, see Campbell and Fert [31]. If one adopts
the general result that the interfacial magnetoresistance is proportional to the
product of the spin-polarizations, ∆Ri/Ri ∼ PPyP2DEG, and using the known
spin-polarization of permalloy (PPy = 0.4) and the InAs 2DEG (P2DEG = 0.1),
a magnetoresistance ∆Ri/Ri ∼ 0.04 might be expected. The experimental value
is clearly smaller indicating some spin-polarization loss at the interface.

Hirohata et al. [26] measured the photocurrent induced in a permalloy/GaAs
(110) contact with respect to the current without illumination and as a function
of the electrode magnetization [26]. Without illumination the current-voltage
characteristics indicate Schottky barrier formation with a barrier height of about
0.7 eV. Subsequently, the contact was irradiated with circularly polarized light
creating spin-polarized charge carriers with the spin direction along the contact
normal. The photocurrent was measured as a function of bias voltage with the
electrode magnetization parallel, ∆Ip, and antiparallel, ∆Iap, to the carrier spin.
For a forward bias exceeding the Schottky barrier, an increase in ∆Ip and a
decrease in ∆Iap was detected that might be related to spin injection. This
corresponded to a relative change in the current of 1%.

In conclusion, spin-injection from ferromagnetic metallic electrodes into semi-
conductors has proven difficult. At present, effects due to spin-injection are small
of the order of 1% at best. In some geometries this might be due to an impedance
mismatch. If a ferromagnet/semiconductor contact is analyzed within the two-
current model, the polarization of the majority (I↑) and minority (I↓) currents
is given by

Psemi =
I↑ − I↓
I↑ + I↓

=
R↓ − R↑

R↓ + R↑ + 4Rs

=
P

1 + Rs
R (1 − P 2)

. (17.12)

Here R↑ (R↓) denotes the majority (minority) resistance and R the total re-
sistance of the ferromagnet, P the spin-polarization of the ferromagnet, Psemi
the spin-polarization of the ferromagnet-semiconductor structure and Rs the
resistance of the semiconductor that is assumed to be unpolarized. In typical
geometries Rs � R, such that an impedance mismatch leads to a significant
reduction of the spin-polarization in the whole circuit as compared to the ferro-
magnetic electrode. A more detailed analysis was performed by Schmidt et al.
[33].
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17.4.2 Magnetic Semiconductors

An alternative approach to spin-injection was suggested by Egues [34] and was
experimentally studied by Oestreich et al. [35], Fiederling et al. [36] and Ohno et
al. [37]. In this approach spin-injection is facilitated in a band-gap-matched semi-
conductor structure containing a strongly paramagnetic component, a so-called
spin aligner. At present three systems have been investigated, namely electron-
doped Cd0.98Mn0.02Te/CdTe [35], electron-doped BexMnyZn1−x−ySe/AlGaAs
[36] and hole-doped Ga1−xMnxAs/GaAs with x = 0.045 [37]. The Mn doped
semiconductors are strongly paramagnetic such that electrons or holes pass-
ing through these can be easily aligned by an applied magnetic field. The
spin-polarization of the injected charge carriers was detected by a polariza-
tion analysis of the photoluminescence. Since the spin-relaxation of holes is
much faster than that of electrons due to valence band mixing [23,38], it is
much more favourable to investigate electron-doped systems. Accordingly, the
spin-polarization of the electron-doped systems introduced above is near 100%
[35,36], whereas in the the GaMnAs system only a spin-polarization of about
1% was found [37]. In the following the results of Fiederling et al. are discussed
in more detail, since this experiment was particularly clear and successful.

The heterostructures investigated by Fiederling et al. [36] are schematically
shown in the inset to Fig. 17.6. A light-emitting diode (LED) consisting of an
undoped GaAs layer sandwiched between n- and p-doped AlGaAs layers, was
grown on a p-doped GaAs substrate. On this LED a spin-aligner consisting
of a non-magnetic BexMgyZn(1−x−y)Se capping layer and a strongly paramag-
netic BexMnyZn(1−x−y)Se layer were grown. BeMnZnSe is ideally suited for the
growth on GaAs heterostructures, since it allows for high quality interfaces with
a small conduction-band offset of about 100 meV. The n-doped BeMnZnSe layer
orders antiferromagnetically at high doping values and is paramagnetic at low
doping with a strongly enhanced g factor. This results in a large Zeeman split-
ting ∆E = gµBB in an applied magnetic field; therefore electrons passing from
the n-contact on the top through the BeMnZnSe layer are spin-aligned by this
Zeeman splitting. The degree of spin-polarization depends on the magnetic layer
thickness. Subsequently, spin-polarized electrons drift through the 100 nm thick
n-AlGaAs layer and recombine with unpolarized holes supplied by the bottom
p-contact in the undoped GaAs quantum well. Fiederling et al. [36] investigated
four structures with varying thickness of the magnetic layer and found a high
spin-polarization only in a device with a layer thickness of 300 nm. The degree of
electron spin-polarization is inferred from the optical polarization of the photo-
luminescence. Let us assume that the injected electrons are fully polarized in the
up-spin (+1/2) state. According to the selection rule for the magnetic quantum
number, ∆m = ±1, only two transitions are possible: a heavy hole transition
(from +1/2 to +3/2) and a light hole transition (from +1/2 to -1/2). The ra-
diation emitted in these transitions has opposite circular polarization. Since the
matrix element for the heavy hole transition is by a factor of three larger than for
the light hole transition, the resultant circular polarization of the emitted light
can be related to the electron occupation numbers n↑, n↓ and the electronic
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Fig. 17.6. Optical polarization Poptical of the photoluminescence of an GaAs LED
under injection of a spin-polarized current. The electrons injected into the LED pass
through a paramagnetic quaternary II-VI semiconductor, BexMnyZn1−x−ySe and are
aligned with an applied magnetic field by the large Zeeman splitting. (a) Optical po-
larization at 6 K as a function of the applied magnetic field. (b) Optical polarization at
1.5 T as a function of the temperature. The solid lines are explained in the text. The
inset shows a sketch of the structure. Electrons are injected from a n-contact through
a non-magnetic BeMgZnSe layer and a magnetic BeMnZnSe layer into a GaAs LED.
Through the p-contact at the bottom an unpolarized hole-current is supplied. After
Fiederling et al. [36].

spin-polarization P by

Poptical =
(3n↑ + n↓) − (3n↓ + n↑)
(3n↑ + n↓) + (3n↓ + n↑)

=
1
2
P . (17.13)

Thus an optical polarization Poptical = 0.5 corresponds to fully spin-polarized
electrons.

The results of Fiederling et al. [36] for the optical polarization are shown in
Fig. 17.6. The top panel shows Poptical as a function of the applied magnetic field
at T = 6 K. Since Poptical is proportional to the spin-polarization, the optical
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polarization might be expected to follow a Brillouin function

Poptical ∝ BJ(x) =
2J + 1

2J
coth

[
2J + 1

2J
x

]
− 1

2J
coth

[ x

2J

]
(17.14)

with x = gJµBB/kBT . With a total spin J = 5/2 for the Mn ion, a satisfactory
fit of (17.14) to the data can be made with a g factor g = 6, see solid line in
Fig. 17.6a. The optical polarization decreases rapidly with increasing tempera-
ture as shown in the bottom panel. This decay is consistent with the temperature
dependence of the Brillouin function as indicated by the solid line. A maximal
value of Poptical = 0.43 is found at low temperatures and magnetic fields in ex-
cess of 3 T; this corresponds to a spin-polarization of the injected electrons of
nearly 90% and shows the high efficiency of this heterostructure.

This demonstrator device works well at low temperatures far below room
temperature and in large magnetic fields. This is due to the paramagnetic na-
ture of the spin-aligner. An obvious remedy of this problem is the use of a
ferromagnetic semiconductor as a spin-aligner. However, since Mn ions in Be-
MnZnSe tend to couple antiferromagnetically at higher doping concentrations,
it is not straightforward to fabricate a ferromagnet in this system. Ga1−xMnxAs
shows a maximal Curie temperature of 110 K at a doping x ∼ 0.053; it is intrin-
sically hole doped and therefore not a good choice, since the spin-relaxation time
is quite small due to the large spin-orbit interaction. Magnetic semiconductors
have been the object of many studies, see the review by Methfessel [8] and a
brief account of recent trends by Ohno [7]. Now the race is on for an electron
doped ferromagnetic semiconductor with a reasonable Curie temperature.

17.5 Spin–Detection

Spin-detection is the reverse process of spin-injection and therefore the tech-
niques already discussed in this chapter might by employed. In the case of ferro-
magnetic metallic electrodes, at present both injection and detection efficiency
are low. In the case of spin-injection using magnetic semiconductors, the spin-
polarization was measured by optical techniques. This is infeasible for actual
device performance; spin-detection using magnetic semiconductors has not been
yet reported. Here a technique based on a ferromagnetic metal/semiconductor
diode as recently discussed by Filipe et al. [39] is briefly reviewed.

Filipe et al. [39] fabricated an iron/GaAs diode by growing electron doped
GaAs on a GaAs substrate and subsequently oxidizing this layer such that an
oxide barrier of thickness 2 nm was formed. On this native oxide an iron film
of thickness 3.5 nm was deposited and protected with a 5 nm Pd layer against
oxidation. The magnetization of the Fe layer was found to be in-plane with a
remanence of 90% of the saturation magnetization and a coercive field of 2 mT.
In an ultra-high vacuum chamber this diode was irradiated with a spin-polarized
electron beam emitted due to the photo-effect on GaAs using circular polarized
light. The collector current through the GaAs was monitored as a function of the
magnetization direction of the Fe layer and the energy of the incident electrons.
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Electron injection was possible for energies above the work function of Pd that
was found to be 4.8 eV. At an injection energy of 5.2 eV a considerable spin-filter
effect of 20% was seen that decreases at higher energies. This hot electron effect
is significantly higher than the detection efficiencies obtained by direct growth
of metallic ferromagnets on the semiconductor.

17.6 Devices

17.6.1 The Datta and Das Transistor

A spin transistor based on a high electron mobility transistor (HEMT) structure
that is analogous to an electro-optic modulator was proposed by Datta and Das
[14]. Consider a 2DEG with two ferromagnetic electrodes for spin injection and
detection. If the current direction is along x̂ then let us assume that charge
carriers with spin direction along x̂ are injected into the 2DEG. While moving
towards the collector electrode with wave vector k, the carrier spins precess
around a pseudomagnetic field BR = α(k × ẑ) due to the Rashba effect, see
(17.11); ẑ is directed along the surface normal. Since the Rashba precession arises
from the electric field perpendicular to the 2DEG, it can be modulated by a gate
electrode. Indeed, the spin-orbit coupling parameter is given by α = 2a46Ez/�g,
where Ez denotes the electric field perpendicular to the 2DEG and a46 is related
to the band structure. Thus, in principle, a HEMT with control of the spin
direction via the charging of a gate electrode and equipped with ferromagnetic
electrodes for spin injection and detection can be constructed.

In the case of an ideal one-dimensional transistor, the pseudomagnetic field
is along the ŷ direction and the spin-polarization rotates in the xz-plane. The
projection along the channel is given by P (x) = P0 cos(Ezx/VR), where P0
stands for the spin-polarization at the injection point. VR is a material con-
stant, VR = �

2/(2m∗a46) of the order of a few volt. In the more realistic two-
dimensional case, however, the wave vector component along ŷ does not vanish
and the pseudomagnetic field is oriented somewhere in the xy-plane. Since the
carrier-wave vector is stochastically distributed after a scattering process, scat-
tering events tend to randomize the precession vector and, consequently, lead to
a vanishing spin-polarization for distances exceeding a mean free path. This issue
was theoretically addressed by Bournel et al. [40] within a Monte-Carlo simu-
lation of carrier motion in 2DEG channels with different widths. For a 2DEG
channel of infinite width the spin-polarization was found to be strongly de-
creased. However, if the lateral size is restricted to values significantly below the
channel length, the one-dimensional case is recovered. This simulation indicates
that the fabrication of a Datta and Das spin-transistor should be possible in a
suitably engineered design.

The dependence of the Rashba parameter α on a gate voltage was investigated
by Nitta et al. [41] in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure
and by Schäpers et al. [42] in InxGa1−xAs/InP quantum wells. Both groups
report a dependence of α on the gate voltage; Nitta et al. [41] observed a variation
of α by a factor of two for gate voltages in the range between −1.5 V and +1.5 V.
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A first attempt to fabricate a demonstrator device based on the ideas of
Datta and Das was reported by Cabbibo et al. [43]. Here a 2DEG formed
in GaAs/AlGaAs and InGaAs/AlInAs heterostructures was contacted with
sputter-deposited Fe contacts. Both heterostructures were n-doped with sheet
densities of about 3 × 1015 m−2 and had mobilities at 77 K in excess of
105 cm2/Vs. Although the authors documented each fabrication step well using
atomic force and scanning electron microscopy, the results were disappointing:
the HEMT fabricated in GaAs proved insulating for voltages below 1 V and
the device in InGaAs showed strongly non-linear current-voltage characteristics.
These negative results might be related to Schottky-barrier formation and
carrier trapping at defects introduced by the Fe sputtering. Meier and Mat-
suyama [44] reported the study of the micromagnetic properties of permalloy
electrodes deposited on p-doped InAs crystals. This is the first step towards a
spin-transistor fabricated in InAs; this might be a good choice of material, since
InAs is known to form ohmic contacts with metals. Gardelis et al. [45] fabri-
cated a spin-valve by contacting a 2DEG formed in an InAs quantum well with
permalloy contacts; the 2DEG was n-doped with a sheet density of 6×1015 m−2

and a low temperature mobility of 5 × 104 cm2/Vs. Different coercive fields as
evidenced by the anisotropic magnetoresistance of the permalloy electrodes were
achieved by shape anisotropy. Magnetoresistance measurements on the HEMT
in magnetic fields applied parallel to the 2DEG showed small features of about
0.1% in magnitude near the coercive fields of the electrodes at a temperature
of 0.3 K. These disappear at 10 K. Gardelis et al. [45] interpreted this small
magnetoresistance as arising from two spin-valve effects, namely: an interfacial
effect near the permalloy contacts and a second effect due to carrier motion
between the contacts. Due to the smallness of the magnetoresistance, however,
an interpretation in terms of spurious effects such as induced Hall voltages
caused by the ferromagnetic electrodes cannot be ruled out.

In conclusion, a concept for a spin-transistor with gate control of the spin
direction has been proposed. An experimental realization of this device has not
been achieved so far, but many groups world-wide are currently working on
HEMTs with magnetic electrodes.

17.6.2 The SPICE Transistor

A hybrid semiconductor/ferromagnetic metal structure, the SPICE (Spin Po-
larized Injection Current Emitter) Transistor, was designed and fabricated by
Gregg et al. [46]. It behaves like a conventional transistor but its electrical pa-
rameters are tuneable by an external magnetic field. The device consists of a
ferromagnetic material of low coercivity, between the base and collector, and
a harder ferromagnetic material between the base and emitter. The hard layer
acts to spin-polarize the current injected from emitter to base. These electrons
diffuse through the base region and impinge on the back-biased collector bar-
rier. The fraction which gets “collected” then depends on the magnetization of
the soft ferromagnetic analyser layer which acts as a spin-dependent guard-rail
on the base-collector potential drop. The common emitter current gain is thus
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magnetically variable and the overall device is a transistor with reasonable power
gain and magnetically variable parameters. Initial prototypes show encouraging
behaviour but their spin-dependence is small owing to interface scattering and
the difficulties of spin injection between materials of very different conductivities
[47].

In early versions of the spin transistor, which was first described in 1995, the
ferromagnetic layers were laid down directly onto the doped silicon base layer,
which resulted in the formation of metal silicides at the interface and these
degraded the performance of the devices. This drawback has been removed by
modifying the design of the transistor and interposing a thin tunnelling barrier
between the emitter and base and also between base and collector in some cases.
This reduces the formation of silicides and other contaminants at the interface,
and has the added advantage that spin injection into the silicon is no longer
subject to the constraints typical of direct contacts and may be targeted at
particular parts of the silicon band structure chosen to optimize device sensitivity
and gain.

Preliminary results on the tunnel variant of the SPICE transistor are promis-
ing, but further work is required to fully optimize and understand the behaviour
of this device.

17.6.3 The Hot–Electron Spin–Valve

A hot-electron transistor as a magnetic field sensor was fabricated and investi-
gated by Monsma et al. [48,49]. This device is based on a giant magnetoresistance
(GMR) mulilayer used as metallic base electrode sandwiched between silicon
emitter and collector, respectively. In some respect, this spin-valve transistor is
the reverse of the heterostructures discussed so far, since the spin-dependent
transport properties are manipulated in the metallic base, whereas the semicon-
ducing electrodes are used for injection and collection. This spin-valve transistor
shows a large magnetic field dependence of the collector current, much larger
than the magnetoresistance of the GMR multilayer used as base. However, there
is no current gain and this feature makes the spin-valve transistor less attractive
for applications.

The spin-valve transistor was fabricated by sputtering a [Cu(2 nm)-
/Co(1.5 nm)]4 GMR multilayer on a freshly cleaned, n-doped Si substrate used
as collector. The emitter is made from a n-doped Si wafer directly bonded by
spontaneous adhesion to the multilayer. At the semiconductor-metal interfaces
Schottky barriers form with typical barrier heights of 0.6-0.7 eV. The operation
principle might be visualized as follows. If the transistor is operated in forward
bias, electrons are accelerated in the emitter and injected as hot electrons with
an energy about 1 eV above the Fermi energy into the base. The probability of
electrons reaching the collector is limited by various scattering processes in the
GMR multilayer that effectively cool the injected electrons. Electrons passing
the base more or less ballistically reach the collector; typical values of the
collector current for an emitter current of 100 mA are less than 1 µA, leading
to a current gain below 10−5. The collector current, however, depends strongly



17 Spin Transport in Semiconductors 413

on spin-dependent scattering in the base: at 77 K a collector current of 0.1 µA
has been measured at the coercive field of the multilayer compared to a value of
0.5 µA for parallel magnetization orientation yielding a magnetocurrent change
of about 400%. This has to be compared with the modest current-in-plane
magnetoresistance of the Co/Cu-multilayer of about 3% [48]. The spin-valve
transistor might prove to be a valuable tool for fundamental research probing
spin-dependent transport of electrons with energies 0.2 to 3 eV above the Fermi
level.

17.7 Conclusions

The research area of spin dependent transport in semiconductors is very ac-
tive and this review can only give a snapshot of the rapid development at this
particular moment in time. However, the basic ideas of spin-injection and trans-
port in semiconductors have been reviewed and the relevant parameters and
length-scales were introduced. This review is focused on transport in magnetic
hybrid semiconductor-structures; superconductor/semiconductor interfaces are
discussed by Das Sarma et al. [50]. The first symposium on spin-electronics was
held in Halle, Germany, from 3. to 6. July 2000; this meeting showed the richness
of physical ideas involved in spin-dependent transport studies and demonstrated
the large potential of spin-electronic devices.
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18 Circuit Theory for the Electrically Declined

J. F. Gregg and M. J. Thornton

Clarendon Laboratory, Oxford University, Parks Road, Oxford OX1 3PU, U.K.

18.1 The Soldering Iron and the Spin Electronician

Such is the sophistication of many contemporary University Physics Courses
that their followers are at ease with the finer details of the Dirac equation and
have no difficulty in thinking in a many-dimensioned Hilbert-space: however
they are often less confident when faced with knowing which end of a soldering
iron gets hot. Spin Electronics is above all a practical science which ultimately
promises to implement a new and revolutionary technology in a form which
will ultimately impact everyday existence. Card-carrying theoretical physicists
doubtless have their part to play in this new and exciting field, but for the rapid
and successful development of this science, the importance of practical knowledge
and experimental dexterity is paramount. Those who would claim proficiency
as Spin Electronicians must, above all, be capable of the simple, basic skills
with which every TV repair engineer is acquainted. To those devotees of Spin
Electronics whose degree courses have left you electrically deprived, this chapter
is dedicated to you. Evidently, in the few pages available, only the surface of
this topic may be scratched, but at least the basics can be laid, topics of major
confusion like transistors and transformers can be treated and signposts pointed
to further study.

18.2 Ohm’s Law and Simple DC Circuits

Ohm’s Law underpins all of electrical and electronic theory. On reflection it seems
bizarre that, in a physical world where non-linearity seems to be the rule, not
the exception, it is experimentally so easy to find systems which exhibit such
a perfect linear relationship between current and voltage. The reason is sim-
ple. Components such as resistors are homogeneous: voltages applied to them
are dropped uniformly over the entire structure and the local electric fields are
small. Even if phenomena exist which invoke higher powers of electric field than
the linear response, the smallness of the field implies that these non-linear effects
are unobserved since higher power terms are vanishingly small. When inhomo-
geneous electrical devices are made, such as junction diodes where most of the
voltage is dropped on a small region of the device, the non-linearities return with
a vengeance – which is why we can use diodes for rectification purposes.
Ohm’s Law, for all its simplicity, is a very capable tool. We will show later

in this chapter that even quite complicated electronic circuits may be analyzed
accurately using little more than Ohm’s Law and a bit of common sense.

M.J. Thornton and M. Ziese (Eds.): LNP 569, pp. 416–463, 2001.
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18.2.1 The Potential Divider

Ohm’s Law affords us the tools to analyze a simple but useful circuit – the
potential divider. Two resistors of values R and R* are connected as in Fig. 18.1.
The question is what voltage appears at the output? The resistors pass current
I = Vin/(R + R∗). This current generates a voltage across R∗ given by Vout =
R∗I = VinR

∗/(R + R∗), so the input voltage has been divided in the ratio
Vout/Vin = R∗/(R+R∗).
This circuit element is widely used in electronics wherever it is necessary

to define a potential, for example for biasing devices. As discussed below, it
has the disadvantage that its source impedance is high, i.e. the voltage drops if
significant current is drawn from it.

Vin Vout

R

R*

Fig. 18.1. Schematic diagram of a potential divider.

18.2.2 Voltage Sources

An ideal voltage source is one which maintains a given voltage between its two
output terminal irrespective of the current which is drawn from it. For real
voltage sources such as batteries, the voltage drops when a load current is drawn
and this is modelled by treating such a source as an ideal voltage source in series
with a source resistance, Rs, as shown in Fig. 18.2.
Figures 18.3, 18.4 & 18.5 show examples of real voltage sources:
Fig. 18.3 is a 12 volt car battery with a 0.01 Ω source impedance. When a

starter current of 60 Amps is drawn, the battery output voltage thus drops to
11.4 Volts.
Figure 18.4 is a potential divider consisting of a 9 Volt battery and divider

resistors of value 6 kΩ and 3 kΩ respectively. The open-circuit (i.e. no-load)
output voltage is 6 Volts. Having read the section below on Norton–Thevenin
transforms, the reader will be able to deduce that the source impedance is 3 kΩ
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RS

V

Fig. 18.2. Ideal voltage source in series with a source resistance RS .

0.01Ω

12V

I =60Amps

11.4 V

Fig. 18.3. Car battery.

in parallel with 6 kΩ (i.e. 2 kΩ) so if a load current of 1 milliamp is drawn, the
output drops to 4 Volts.

9V

3kΩ

6kΩ 4V

1mA

Fig. 18.4. Potential divider.

Figure 18.5 shows the use of a Zener diode to make a stable, low impedance
voltage source. The characteristics of a typical Zener diode are shown in Fig. 18.6.
The diode shown breaks down at approximately 6 Volts and is biased with a
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9V

1kΩ

6 V 4V

1mA

2mA

3mA

Fig. 18.5. Zener diode used to make a stable, low impedance voltage source.

Volts6.2

I

3 mA

0

2 mA

6.25

Fig. 18.6. Characteristics of a typical Zener diode.

current of about 3 mA from the 9 Volt battery and the 1 kΩ resistor. As shown
from the characteristics, if a load current of 1 mA is drawn (leaving 2 mA for the
diode) the voltage drops by only 0.05 Volts so the source impedance associated
with the diode is only 50 Ω. The circuit may be modelled by treating the real
Zener as an ideal diode (with the characteristics as shown in Fig. 18.7) in series
with a resistance as in Fig. 18.8. The overall source impedance is now 50 Ω in
parallel with the 1 kΩ bias resistor, i.e. 48 Ω which is a considerable improvement
over the potential divider discussed above. Zeners are however more expensive
than resistors and can generate more electrical noise, so are usually used only
where voltage stability is crucial. Temperature compensated variants may be
purchased for particularly critical applications.
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I

Volts6.00

Fig. 18.7. Characteristics of an ideal Zener diode.

9V

1kΩ

6 V(ideal)

50Ω

Vout

Fig. 18.8. Modelling a real Zener diode in the circuit of Fig. 18.5 in terms of the ideal
Zener diode shown in Fig. 18.7.

18.2.3 Current Sources

An ideal current source is a more difficult concept to grasp, since, unlike volt-
age sources which are readily imitated by batteries, there is no simple electrical
component which performs this function. An ideal current source outputs a con-
stant current irrespective of the size of the resistor which is connected across its
terminals. Clearly if the current source is open-circuited (i.e. the load resistor is
disconnected), this is a tough call. To obey its job-description, the source must
now increase the voltage across its output terminals until electrical breakdown
of the intervening air occurs and the requisite current can be passed in the form
of an electrical gas discharge! In practice, real current sources try their best by
increasing the terminal voltage up to a certain limit, and then they give up. Two
examples of circuits which function as current sources are shown in Fig. 18.9 to-
gether with their electrical characteristics. It may be seen that the current is
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(b)

RE

RB E

d

R

V
I ≅

2×Vd

RS

V

I
ideal current source

real current source

(a)

(c)

Fig. 18.9. Two examples of circuits (a) and (b) which function as an idealised current
source and (c) their electrical characteristics.

Fig. 18.10. A real current source may be modelled by as an idealised source with an
admittance in parallel.

not wholly independent of voltage across the source. This may be modelled by
representing the real source as an ideal source in parallel with an admittance as
shown in Fig. 18.10.
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18.3 Norton–Thevenin Transforms

≡
R

V

A

B

R
R

V

A

B

Fig. 18.11. Thevenin and Norton representations of the same circuit.

R

V
*

*

RR

RR

+







+ *
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RR






+ *

*

RR

VR

≡ R
R

V
R*

R

R*

≡

≡

(a)

(b)

(c)

Fig. 18.12. Example of the Norton–Thevenin transformation. (a) Potential divider
with its equivalent form reduced to its Norton equivalent (b) and (c).

There are two theorems ascribed to Norton and Thevenin whose upshot is
that the two circuits shown in Fig. 18.11 involving respectively a voltage source
and a current source are indistinguishable from the viewpoint of someone who
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has access only to the two terminals A and B. Clearly the open-circuit volt-
ages of both circuits are identical – both are equal to V . If the terminals are
short-circuited, the current that flows is in each case V/R. Indeed, no matter
what experiment is conducted at the terminals A and B, it is impossible to
distinguish between these two configurations. The Norton and Thevenin Theo-
rems further imply that any combination of voltage sources, current sources and
resistors which are connected by two wires to the rest of the world may be repre-
sented by either circuit with appropriate values. Moreover, such circuits may be
analyzed rapidly and effectively by toggling between the Norton and Thevenin
representations for selected fractions of the circuitry.
A simple example of the use of these theorems is to reduce the potential

divider circuit of Fig. 18.12a to its Norton equivalent, as illustrated in Fig. 18.12b
and c. It may easily be seen from the result that the source impedance of the
potential divider is indeed R1 and R2 in parallel.
A more sophisticated example of the use of the Norton–Thevenin equivalents

for circuit analysis is shown in the example below:

Problem: Use the method of repeated Norton–Thevenin transformations to
determine the current I in the following circuit.

4Ω

4Ω

3Ω

4.5 V
2Ω 2Ω

2Ω2Ω1Ω

8 V

5A2A

I
2A

Fig. 18.13. Norton–Thevenin transformation problem.

Solution: The 4 V battery clamps the rails to 4 Volts so components to the left
of it have no effect on I. The circuit transforms as follows:
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2Ω

2Ω
4A 5A

2Ω

2Ω

4.5 V
9A

3Ω
1Ω

4Ω

3Ω

4.5 V
2Ω

2Ω2Ω

8 V
5A

(a)

4Ω 4Ω

3Ω

3A
2A

3Ω

1.5A

2Ω

1.5Ω

4Ω

4.5A

1Ω

4.5 V

2Ω

9V
3Ω

(b)

4Ω

8 V

4Ω1.5Ω

6.75 V 2Ω

11.5Ω

1.25 V I

(c)

Fig. 18.14. Norton–Thevenin transformation solution.

Answer: I = − 1.25
11.5 Amps

18.4 AC Circuit Theory

To DC currents and voltages, capacitors behave like open circuits and inductors
look like lengths of wire with a bit of series resistance. For alternating currents
however, the behaviour of a capacitor is described by (18.1):
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CdV/dt = I (18.1)

Inductors obey the relation

V = LdI/dt (18.2)

For sinusiodal signals, the currents and voltages are thus an assortment of
cos and sin functions with appropriate phases. This is messy. An elegant solution
to this confusion lies in imagining that a sinusoidal signal (voltage or current)
is the displacement viewed from the side of a mark on a rotating disk. In other
words, there is a second hidden dimension which the eye does not see on the os-
cilloscope and the displacement in this dimension is also harmonic but displaced
by 90 degrees. Equating this hidden dimension with the imaginary number axis
and equating the real observed voltages and currents with the real number axis
allows us to represent electrical signals in the form

V = V0 exp [jωt] (18.3)

and

I = I0 exp [jωt] (18.4)

Substituting into (18.1) and (18.2) produces the highly satisfactory result
that inductors and capacitors can be shoe-horned into an Ohm’s Law lookalike
where complex impedances ZL = jωL and ZC = 1/jωC replace real resistance.
This is the basis of AC theory. The complex impedances of these components

add in series and their corresponding admittances add in parallel. They are
generally susceptible to all the same manipulations that we have seen performed
with simple resistors.

18.4.1 Transfer Functions

The transfer function of a circuit is simply Vout/Vin in complex notation such
that the amplitude and phase information about the relationship between input
and output are preserved. As a simple example, consider the following circuit:

R
VoutVin

C

Fig. 18.15. Example of a single “pole” whose transfer function is given in Fig. 18.16.
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Vout
Vin

=
1/jωC

(R+ 1/jωC)
=

1
1 + jωCR

(18.5)

On a polar plot as a function of increasing frequency, the transfer function
looks like this:

Im

Re

+1-1

ω=0ω=∞

ω=1/RC

Fig. 18.16. Polar plot of the transfer function of Fig. 18.15.

As frequency increases, the amplitude gets smaller and the phase angle
asymptotically approaches −90◦. At a phase angle of −45◦, the frequency is
ω = 1/RC and the amplitude is 1/

√
2 of the DC value.

A function of this form is know as a “pole” since it has a singularity on
the complex frequency plane at ω = j/CR. Such poles are mainly of interest
to mathematicians since they may be used in contour integration to evaluate

R

Vout

Vin

C

C R

Fig. 18.17. Wien bridge circuit.
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interesting and inaccessible definite integrals. For the purposes of electronics
they are significant because they determine the good behaviour (or otherwise!)
of amplifiers with feedback as we shall discuss below.
Another interesting circuit is the Wien bridge shown in Fig. 18.17. It is left

to the reader to show (by calculating the transfer function Vout/Vin) that the
output of this circuit is in phase with the input at a frequency ω = 1/RC and
that the modulus of the transfer function is then 1/3.

18.4.2 Norton–Thevenin Transforms Applied to AC Theory

Everything we discussed previously about Norton–Thevenin transformations ap-
plies equally to AC circuits. AC voltage sources replace batteries and complex
impedances replace resistances. The following example shows the procedure for
analyzing AC circuits using this method.

Problem: Use the method of repeated Norton–Thevenin transformations to
determine the current I in the following circuit.

Vo cos(ωt+π/4)

1Ω

1Ω

~

~
2jΩI

Vi cos(ωt)

-jΩ

-jΩ

2jΩ

Vo=Vi=  50 Volts

Fig. 18.18. Norton–Thevenin AC circuit problem.

Solution: The circuit transforms as follows:
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1-j

~

~ 1+jI
0V
�

iV
�

j

1+jIj1

Vi

−

�

1-j
j2

Vo

�

j

1+jI

1

*

j1
1

j
1

R
−







−

+=I*

Fig. 18.19. Norton–Thevenin AC circuit solution.

I∗ =

⇀

Vo

j
+

⇀

Vi

1− j =
50 (1 + j)
j
√
2

+
50
1− j

=
100 (1− j)
2
√
2

+
50 (1 + j)

2
� 35 (1− j) + 25 (1 + j) = (60− 10j)Amps

also

R∗ =
(

−j + 1 + j
2

)−1

=
2
1− j = 1 + j

~
1+jI

1+j

(60-10j)(1+j) cos(ωt)

(a)

~
2(1+j)I(60-10j)(1+j)

cos(ωt)

(b)

Fig. 18.20. Norton–Thevenin AC circuit solution.
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I =
(60− 10j)(1 + j)

1 + j
= (30− 5j) cos(ωt)Amps

=
√
925 cos(ωt+ φ)Amps where φ = − arctan

(
1
6

)

18.5 Impedance Transformation

Impedance transformers are used in various ways: stepping down alternating
voltages for power supplies, matching source and load impedances to maximize
power transfer, and modifying effective source impedance to obtain the best
noise performance from an amplifier. Transformers are also used for electrical
isolation to improve personnel safety.
Two impedance transformation methods are in common use. The most usual

is the two-coil transformer which is easy to use but bulky and expensive. Other
methods include the use of “pi” and “tee” transformation networks or transmis-
sion lines with stub-matching.

18.5.1 The Transformer and its Uses

To understand the transformer, consider two coils situated close together such
that the same magnetic flux goes through each (Fig. 18.21). The coils have
N1 and N2 turns respectively and cross-sectional area A. The magnetic field
seen by the coils is due to the currents I1 and I2 in each and is given by B =
C(N1I1+N2I2) where C is a geometrical constant common to both coils. Hence
the flux through the coils is respectively:

Φ1 = N1AB = CA(N2
1 I1 +N1N2I2) = L1I1 +MI2 (18.6)

and
Φ2 = N2AB = CA(N1N2I1 +N2

2 I2) = L2I2 +MI1 (18.7)

where L1, L2 and M are respectively the self and mutual inductances. Two
things are apparent: firstly the mutual inductance between coil 1 and coil 2 is
the same as between coil 2 and coil 1; secondly (and this arises because we
assumed perfect coupling between the coils, i.e. all flux lines pass through both
of them) L1L2 =M2. For imperfectly coupled coils M2 = k2L1L2 where k < 1.
Differentiating (18.6) and (18.7) gives,

V1 = L1
dI1
dt
+M

dI2
dt

= jωL1I1 + jωMI2 (18.8)

V2 = L2
dI2
dt
+M

dI1
dt

= jωL2I2 + jωMI1 (18.9)

These equations are generally valid, even if the transformer coils are imperfectly
coupled. A number of interesting results are apparent from (18.8) and (18.9).
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N1

N2

B

Fig. 18.21. Schematic diagram of a transformer.

For example, if the coils are perfectly coupled then L1L2 = M2 and by
dividing (18.8) by (18.9) we have V2/V1 = N2/N1; in other words the voltage is
transformed by a numerical factor equal to the turns ratio.
Likewise we may rewrite (18.8) as

I1 = V1/jωL1 − (M/L1)I2 . (18.10)

Hence we can see that the primary current consists of two parts: a parasitic
current (called the excitation current or magnetizing current) V1/jωL1 which
is present even when there is no load on the secondary and which corresponds
to connecting an inductor of size L1 across voltage source V1; and a current
proportional to I2 but smaller by the ratio M/L2, which in the case of perfect
coupling is just N2/N1.
So leaving aside the excitation current, a perfectly coupled transformer steps

down the voltage and steps up the current by the factorN2/N1; a load impedance
viewed from the primary side then “looks” (N2/N1) times larger than it really is.
However, since the current/voltage are stepped up/down by the same factor, the
powers entering the primary and leaving the secondary are the same (ignoring
transformer losses) and energy is conserved – which is why a transformer cannot
be used as a replacement for a power amplifier.
A numerical example is shown in Fig. 18.22a. The transformer has 1000

primary turns and 100 secondary turns and is fed with 240 Volts. A 24 Ω load
is connected to the secondary. The secondary voltage is then 24 Volts (i.e. a
step-down factor of 1000/100 = 10). The secondary current is 1 amp and so
the primary current is 100 mA (again stepped down by a factor 10) plus the
excitation current. Suppose the transformer and its load are in a black box
and the observer has access only to the primary terminals. When the load is
connected or disconnected the primary current changes by 100 mA, and given a
driving voltage of 240 Volts, this appears to the observer to represent a load of
2400 Ohms. Thus it is said that the load “reflected to the primary” has a value
of 2400 Ohms and the equivalent circuit may be redrawn as in Fig. 18.22b.
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Black box

~

240 V

1001000

24Ω

L1 L2

100mA

24V

1A

~
240 V

2400ΩL1

(b)

(a)

Fig. 18.22. (a) Example of transformer with (b) its equivalent circuit.

18.5.2 Real (i.e. Imperfect) Transformers

Real transformers are a bit more complex. For a start they are imperfectly
coupled so the voltage and current ratios are not as clean as described above.
Moreover there are power losses owing to the resistance in the copper windings of
the primary and secondary and also due to magnetic hysteresis in the iron core
and to eddy current heating (which may be reduced by laminating the core).
For a real transformer the equivalent circuit therefore looks as in Fig. 18.23
where jχm is the primary reactance, Rm represents the core losses, R1 and R2
represent the copper losses, and jχ1 and jχ2 are the stray reactances due to
imperfect coupling.

R1 R2

Rm jχ2jχ1

jχm

Fig. 18.23. Example of a real transformer.
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18.6 The Ideal Operational Amplifier

Operational amplifiers are black boxes with two inputs, V + and V −, and an
output, Vout. The output voltage is the voltage difference between the two inputs
multiplied by a very large number like 108. This large number is the Open Loop
Gain of the OPA, usually denoted by A. The OPA is supplied with power rails
usually of +/-15 Volts, outside of which the output cannot go. It follows that
if the output is to be a sensible voltage and not squashed against one or other
power rail, then the voltage difference between the inputs must be minute. For
A = 108 and Vout = 1 Volt, V +−V − = 10 nanovolts, which to most multimeters
is unmeasurable. This suggests a very simple way to analyse OPA circuits to high
accuracy: if the OPA is working properly, the voltages V + and V − are to all
intents and purposes identical.

-

+
Vout

V+

A

+15V

-15V

V-

Fig. 18.24. Schematic diagram of an operational amplifier.

We now examine the two main configurations is which an OPA is used to
amplify signal; these are illustrated in Fig. 18.25.
In Fig. 18.25a, the signal is fed to the inverting input V − and the noninverting

input V + is connected to earth. It follows that the OPA will adjust its output to
make sure that V − also is held at earth potential and any current which flows
from Vin to V − through R1 gets sucked through R2 by virtue of Vout being held
at just the right negative potential to remove the charge from V − as fast as it
pours in. R1 and R2 pass the same current and Ohm’s law then gives,

I = Vin/R1 = −Vout/R2 (18.11)

and hence the gain of the circuit is

Vout/Vin = −R2/R1 (18.12)

This circuit introduces the concept of a virtual earth – a point in the circuit
which, although it is not actually connected to ground is nonetheless held at
ground potential by the action of the circuitry.
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+
-

Vout
Vin

R2

R1

1in
2

1

in

out RZ;
R

R

V

V =−=

∞=+= in
2

21

in

out Z;
R

RR

V

V

+
-

Vout
Vin

R1

R2

(b)

(a)

Fig. 18.25. Schematic diagrams of operational amplifiers with (a) parallel and (b)
series feedback.

In passing we should note that the input impedance of this circuit is R1 since
V − is a virtual earth.
In the circuit in Fig. 18.25b, the signal is fed to the noninverting input and

the inverting input is held at a fraction R2/(R1 + R2) of the output voltage
determined by a potential divider with resistor values R1 and R2. As before, the
OPA sets its output voltage to make sure that

V − = VoutR2/(R1 +R2) = V + = Vin (18.13)

from which the voltage gain is found to be

Vout/Vin = (R1 +R2)/R2 (18.14)

Not only is the gain of this circuit positive, but the input impedance is that
of the OPA itself and can be very large indeed – hundreds of megaohms in the
case of an FET OPA. Unlike the first circuit the gain cannot be less than unity.
These circuits introduce the concept of negative feedback and serve to illus-

trate the difference between the two main types.
The first circuit is an example of parallel feedback where a current propor-

tional to the output voltage is fed back via a path (i.e. through R2) parallel to
the amplifier to cancel the effect of the input current arriving via R1.
In the second case, part of the output voltage is fed back to cancel the effect

of the input voltage. This is achieved by arranging that the OPA and the fed
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back voltage are in series between the input voltage (at V +) and ground. This
is called series feedback.
In some instances it is desired to amplify the difference between two signals.

An example might be the output of a tape recorder head where both the live
and the earth of the leads coming from the tape head are contaminated with the
same noise pickup. It is desired to reject the contamination which is common to
both leads (the so-called common-mode signal) and amplify just the difference
between the leads (the differential mode signal). The circuit shown in Fig. 18.26
performs this task. The example shows how to calculate the values of the various
resistors. Note that since V + and V − for the OPA are always at the same poten-
tial, making R1 and R3 the same value will ensure that the positive and negative
inputs, Vnoni and Vi, of the whole circuit have the same input impedance.

Problem Calculate the output Vout of the opamp illustrated in terms of its
inputs Vi and Vnoni. Assume its open-loop gain is large. Find the condition for
which the common-mode gain is zero.

+

-
Vout

Vi

R4

R3

R1 R2

Vnoni

V+

V-

Fig. 18.26. Differential OPA circuit.

Solution If the open loop gain is large then V + and V − are effectively at the
same potential at all times. So

V + =
R2

R1 +R2
Vnoni = V −

V − = Vout +
R4

R3 +R4
(Vi − Vout)

=
R3

R3 +R4
Vout +

R4

R3 +R4
Vi

So
R3

R3 +R4
Vout =

R2

R1 +R2
Vnoni − R4

R3 +R4
Vi
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which we rewrite as
αVout = βVnoni − γVi

Defining

Vcm =
Vnoni + Vi

2
and

Vdm = Vnoni − Vi

implies that

Vnoni = Vdm + 2Vcm/2 and Vi = 2Vcm − Vdm/2

where Vcm is the common mode voltage and Vdm is the differential voltage.

Thus αVout = β

(
Vdm

2
+ Vcm

)
− γ

(
Vcm − Vdm

2

)

=
β + γ

2
Vdm + (β − γ)Vcm

so if
β = γ , i.e.

R2

R1
=

R4

R3

the common mode gain is zero and the differential mode gain is

β + γ

2α
=

β

α

=
R2

R1 +R2
× R3 +R4

R3
=

R2

R1
=

R4

R3
.

18.6.1 Closed Loop Gain vs Open Loop Gain

Recall that the Open Loop gain of a typical OPA is of order 108 while a typical
closed loop gain is of order 100. The factor of 106 between these two is called
the Gain Reserve – in other words it’s how much gain is waiting in the wings
unused. Actually to say that it is unused is misleading - it is actually working
hard behind the scenes suppressing the inherent nonlinearities of the OPA. If
the OPA were for some reason to be used to give its full gain of 108, the output
would be found to distort badly. The reserve gain of 106 is working to reduce any
such distortions by approximately 106 so that the observed output with a closed
loop gain of 100 is very presentable. This is an example of one of the various
used to which feedback may be put.

Differential Input Amplifier with High Input Impedance The differential
amplifier circuit discussed above has one Achilles heel – its finite input resistance
which is determined by the input resistors R1 and R3. The circuit in Fig. 18.27
overcomes this. It is left to the reader to show that the gain of this circuit is
(2R+R∗)/R∗.
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Vo2

-

+
Vo1

Vi1

R

Vi2 +

-

R* 

Gain Set

R

Fig. 18.27. Differential input amplifier circuit.

18.7 Transistors – How to Choose a Good One.

Transistors come in two basic flavours, bipolar transistors and field-effect tran-
sistors (of which we shall discuss just one variant – the JFET).
A bipolar transistor is a current amplifier. Its feature of merit is its current

gain β = IC/IB . There are three terminals – emitter, base and collector – and
in the NPN version illustrated in Fig. 18.28a the device is biased by holding
the collector several volts positive relative to the emitter and injecting a current
into the base. In practice, injecting IB requires the base to be biased about
0.6-0.7 Volts positive relative to the emitter since the base-emitter junction is
just a junction diode. When this base current is injected, a collector current
is pulled into the transistor which is β times larger. Typical values of β for a

base

emitter

collector

gate

drain

source

(a) (b)

Fig. 18.28. Transistor symbols for: (a) bipolar NPN transistor and (b) N-channel
JFET.



18 Circuit Theory for the Electrically Declined 437

discrete transistor are about 100 or bigger (perhaps a bit less – say 20 – for
power devices).
Figures 18.29 and 18.30 outline the most important behavioural characteris-

tics of a typical NPN bipolar transistor.

VBE

IC ( )1eII kTBEeV
0CC −=

Fig. 18.29. Characteristics of a typical NPN bipolar transistor.

IC (µA)

VCE 

0 0.5 1 2
50

100

200

300

400
IB= 4µA

IB= 3µA

IB= 2µA

Fig. 18.30. Characteristics of a typical NPN bipolar transistor.

A FET has three terminals: a “drain” and a “source” between which is the
“channel” in which a current flows (ID) and a “gate” (see Fig. 18.28b) whose
voltage relative to the source, VGS , controls ID.
To understand the operation of a FET, consider a capacitor consisting of two

metal plates separated by an air gap. The resistance of one plate is measured
between 2 opposite edges and its proportional to 1/σ, where σ = ne2τ/m∗ is
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VGS

ID

2

P

GS
0DD V

V
1II 





+=

ID0

-VP

Fig. 18.31. Phase space of a FET plotting VGS against ID.

the conductivity of the material which is proportional to n, the number of free
electrons. Now charge the capacitor so that the plate whose resistance is being
measured carries the positive charge. The electron density in this plate has de-
creased and hence the resistance of the plate (the “channel”) has increased as a
function of the voltage at which the other plate (the “gate”) is held. This is the
principle of the FET, the difference being that real FETs are made from semicon-
ductor (not metal) channels. Since n is so high in a metal, the metal channel can
never be completely depleted of electrons (pinched-off) by the modest applied
gate voltages in typical electronic circuits.

VDS (volts)

ID (mA)

1

4

8

12

16
VGS= 0V

-1

-2

-3

0 4 8 12321

Fig. 18.32. Phase space of a FET plotting VDS against ID.

The “phase space” of a FET is 3-dimensional with axes VGS , ID and VDS .
Figures 18.31 and 18.32 show projections of this surface. Figure 18.31 is described
by (18.15):
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ID = ID0(1 + VGS/VP )2 (18.15)

where ID0 and VP are parameters characteristic of a particular device.

18.8 Small Signal Analysis Using Differential Calculus –
the Physicist’s Approach

The amplifiers which we discuss in this chapter are all for use with small signals,
i.e. AC amplitudes which are much smaller than the DC values of voltage and
current which bias the circuit components. The physicists approach to analyzing
these systems is to treat the signals as differential voltages and currents and
use the principles of calculus. The method is best explained by illustration and
there follows an example of this technique used to extract the input and output
impedances of the common collector transistor configurations.

18.8.1 Common Collector

REIE

Vout

Vin

+V

IC

IB

IE

VBE

Fig. 18.33. Common collector circuit.

Zin =
(
∂Vin
∂IB

)
VCE

(18.16)

=
∂ (VBE +REIE)

∂
(

IC

β

) (18.17)

= β

{
∂VBE

∂IC
+RE

∂IE

∂IC

}
(18.18)

� β

{
1
gm

+RE

}
(18.19)
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RE

Vout

Vin

+V

IC

IB

IC-Iout

VBE Iout

RS

~

Fig. 18.34.

Zout = −
(
∂Vout
∂Iout

)
Vin

=
1

Yout
(18.20)

Vout = RE(IC − Iout) (18.21)

⇒ Iout = IC − Vout
RE

(18.22)

⇒ Yout = −
(
∂Iout
∂Vout

)
Vin

= −
(

∂IC

∂Vout

)
Vin

+
I

RE
(18.23)

but
Vout = Vin − RSIB − VBE (18.24)

⇒ −
(
∂Vout
∂IC

)
Vin

= −RS

(
∂IB

∂IC

)
Vin

−
(
∂VBE

∂IC

)
Vin

(18.25)

= −
(
RS

β
+
1
gm

)
(18.26)

substituting for
(

∂IC

∂Vout

)
Vin

from (18.25) into (18.23) gives

⇒ Yout =
1

RS/β + 1/gm
+

1
RE

(18.27)

which means Zout = 1/Yout appears as in Fig. 18.35.
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RE

mg

1

β
SR

� Zout =

Fig. 18.35. Output impedance of the common collector transistor.

18.9 Equivalent Circuits – the Engineer’s Approach

The engineering approach to analyzing transistor circuits involves constructing
the AC equivalent circuit. To AC currents, power rails look like earth points
(provided they are properly decoupled) since they no more wave up and down in
voltage when a current is injected than the earth contact. In equivalent circuits
resistors and capacitors feature unaltered, while transistors and FETs are rep-
resented by networks of impedances and current sources characterized by sets
of interlocking parameters. The main substitution needed to create an equiva-
lent circuit is that for the npn transistor. As shown in Fig. 18.36 the transistor
symbol is excised and replaced by the network illustrated. Figure 18.37 shows
the common emitter circuit and its equivalent circuit arrived at by this method

E

βiB

C

E

B ≡ iB
m

ie g
h

β=

B
C

Fig. 18.36. FET and its equivalent circuit.
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(see Fig. 18.38), together with the input and output impedances and the gain ar-
rived at by this method of analysis. Figures 18.39 and 18.40 shows the equivalent
circuit technique applied to analyzing the common collector configuration.

18.9.1 Common Emitter Equivalent Circuit

C

E

B

ICRL

Vout

Vin

+V

Fig. 18.37. Common emitter circuit.

Vout

ieh βiB

ie

in
B h

V
i =

Vin

RL

Fig. 18.38. Equivalent circuit of the common emitter.

Zin = hie =
β

gm
(18.28)

Vout
Vin

= −βiBRL = − Vin
β/gm

RL = −gmRL (18.29)

so
Zout = RL (18.30)
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18.9.2 Common Collector Equivalent Circuit

RE

Vout

Vin

+V

Fig. 18.39. Common collector circuit.

ieh βiB

Vout

Vin

(1+β)iBRE

RE

iB

Fig. 18.40. Equivalent circuit of the common collector.

Vout = (1 + β) iBRE (18.31)

since
iB =

Vin − Vout
hie

(18.32)

then

Vout =
(1 + β)RE(Vin − Vout)

hie
(18.33)
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⇒
(
1 +

hie

(1 + β)RE

)
Vout = Vin (18.34)

⇒ GV =
Vout
Vin

=
1

1 + hie/ (1 + β)RE
=

1
1 + β/ (1 + β) gmRE

∼ 1

(18.35)

18.10 The Loadline and its Uses

The principle of operation of loadlines rests on a very simple fact – that if a
device and its load are in series across the power rails then the sum of the
voltage dropped on the load and the voltage dropped by the device must equal
the supply voltage. Since the load is ohmic, if no current flows then the load
voltage is zero and the full power rail voltage is across the device. Thus on a
current voltage diagram the device is sitting at a point on the current = 0 axis
at a voltage equal to the rail voltage. For any other value of current, Ohm’s
law for the load tells us that the device must sit on a straight line projected
back from this point with a slope of −1/RL where RL is the load resistance.
This line is called a loadline. If we know that the device is passing a particular
current then the circuit operating point must lie at the intersection of the device
characteristic for that current and the loadline for the resistance for the simple
reason that the device and the load must agree on what current they are passing!
A loadline example is given below.

Example The transistor in the circuit in Fig. 18.41a has β = 100 and zero
output admittance for VCE > 1 V. Sketch its characteristics and superimpose
the loadline appropriate to the circuit shown.

VCE

B

ICRL=1kΩ

VBE

20 V

16

24

32

(a) (b)

IB= 300µA

VCE (volts)
0 5 10 20

IC (mA)

2
8

load line for R
L1kΩ

IB= 200µA

IB= 100µA

Fig. 18.41. Simple transistor circuit (a) and (b) the transistor characteristics with its
appropriate loadline.
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Problem The FET in Fig. 18.42 has IDO of 16 mA and a VP of 4 Volts. Draw its
ID vs VDS characteristics for a selection of different gate voltages. Draw the line
bounding the pinch-off region. Add a load-line corresponding to the 1 kΩ load
resistor and determine for what range of gate voltages the amplifier operates in
the pinched off zone. When below the pinched off zone, what value of resistance
does this JFET offer when VG is 1 Volt?

1kΩ

+12 V

VG

Fig. 18.42. Loadline problem.

Solution

Reffective
for
VG=-1V

VDS (volts)

0 4 8 12

ID (mA)

1

4

8

12

16
VG= 0V

-1

-2

-3

×

Pi
nc

he
d 

of
f z

on
e

1kΩ load line

Fig. 18.43. Loadline solution.

The amplifier is pinched off when VG < −1Volt.
When VG is -1 Volt, the FET becomes like a resistor for VDS < 1Volt.

R =
V

I
=

3V
9mA

= 330Ω
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From the formula

Reff =
V 2

P

IDO (VP + VGS)

=
42

16 (4− 1) =
1
3
k Ω = 330Ω

the same result is obtained.
A different type of loadline may be constructed for the particular case of a

FET whose operating current is set by the insertion of a source resistor as shown
in Fig. 18.44a. The rationale behind this is that the gate-source voltage VGS =
RID. This relationship appears as a straight-line on the VGS/ID characteristics
for the device, as shown in Fig. 18.44b.

(a) (b)

ID

DG
S

R

VGS

ID

0

R loadline

2

P

GS
0DD V

V
1II 





+=

-VP

ID0

ID

VGS

Fig. 18.44. (a) Common gate FET and (b) the loadline imposed on the device char-
acteristics.

18.11 Miller Effect

The Miller effect is one of the main limitations on the high frequency perfor-
mance of transistor amplifers and not only decreases the amplitude gain but
also introduces large phase shifts. It is essentially a phenomena which magnifies
the stray capacitance of the circuit by the voltage gain and thereby lowers the
frequency of the corresponding pole by the same factor. To see how this works
consider Fig. 18.45.
The voltage on the capacitor C is (1+GV )Vin, so the charge on the capacitor

is (1 +GV ) larger than on the identical capacitor in Fig. 18.46.
This charge must be supplied by Rs, and hence the frequency response of

the circuit is that of a single pole whose characteristic frequency is given by
1/RC(1 + GV ) as opposed to 1/RC for the case of the simpler pole (with the
same values of R and C) in Fig. 18.46.
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Fig. 18.45. Miller effect.
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Fig. 18.46. Miller effect.

18.12 Nyquist Amplifier Stability Theory

One way to make an oscillator is to take an inverting amplifier with gain −A and
apply negative feedback to it via a network that provides 180◦ of phase shift at
a specific and well-defined frequency. The result is that, for that frequency only,
positive feedback occurs and the circuit oscillates. The only criterion to satisfy
is that the gain A of the amplifier more than makes up for the attenuation of
the frequency selective feedback network.
These requirements may be elegantly expressed on the Argand diagram for

the transfer function of the frequency selective network, Fig. 18.47. If the path
of the transfer function includes the point -1 on the real axis, then the circuit
will oscillate (dotted curve). If it doesn’t, the circuit is stable – and boring (solid
curve)! This is called the Nyquist Stability Criterion.
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Fig. 18.47. Plot of the transfer function, with A the amplifier gain.

The circuit of such an oscillator is shown in Fig. 18.48 where we have used
a triple pole network as an illustrative example of a suitable frequency selective
network. Analysis reveals that the output of this network is antiphase with the
input for a frequency ω =

√
6/RC and that the attenuation is then a factor of

29. Accordingly the gain of the amplifier must be -29 to ensure oscillation.

+
-

351

741

R

R

R1

R2

Fig. 18.48. An oscillator circuit.

The 351 OPA provides a high input impedance to avoid loading the fre-
quency selective network. The gain of the 351 is R1 + R2/R2. R1 is a negative
temperature coefficient thermistor which actively stabilises the 351’s gain to 29
and hence keeps the oscillator amplitude constant. In practice R2 is chosen such
that R1 + R2/R2 is slightly larger than 29 when the thermistor is cold. The
741 OPA provides the necessary π phase shift to cancel the phase shift of the
frequency selective network at resonance. The Argand diagram of the transfer
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function multiplied by the amplifier gain of 29 is shown in Fig. 18.50b and is
seen (from the zoom in Fig. 18.50c) to intersect the point -1 on the real axis
when oscillating stably.
Suppose now that the gain necessary to sustain oscillation is obtained from

three separate amplifiers which have been cascaded and furthermore that the
triple pole network is split into its three constituent sections each of which is
intercalated between amplifier blocks (Fig. 18.49). The order of the circuit func-
tional blocks is different but the functioning of the circuit is unchanged (leaving
aside minor issues of different input/output impedance matching). So this circuit
will still oscillate. The alarming thing is that this is exactly the circuit we con-

Fig. 18.49. Oscillator circuit with three single transistor gain stages (and no amplitude
stabilisation!)

struct when we cascade three single transistor gain stages and then put feedback
round the whole assembly. The three poles come ready supplied with each tran-
sistor – there is no need for additional discrete components! They are there by
virtue of the Miller capacitance of each device (the capacitor of the pole) being
driven by the output resistance (the resistor of the pole) of the previous stage. So
in general, an amplifier which consists of three or more single transistor stages
with feedback fails the Nyquist Test and is an oscillator instead! Because it has
no provision for regulating the gain to ensure amplitude stability, it usually also
has a very nasty waveform.
This begs the question as to how operational amplifiers could possibly work.

After all they consist of many cascaded gain stages round which feedback is
applied by the user.
Useful insight is gained by looking at the Nyquist plot for the transfer func-

tion of one, two and three cascaded poles as seen in Fig. 18.51 a single pole gives
a maximum of 90◦ phase-shift (Fig. 18.51a). Two poles together are capable of
giving the necessary 180◦ phase shift necessary for oscillation (Fig. 18.51b), but
only at infinitely high frequency where their attenuation is infinite and they are
thus unable to access the -1/A point, no matter how large is A. Three poles can
produce 180◦ phase shift at a finite frequency (Fig. 18.51c). So we see that if
more than 2 poles are present we cannot prevent there being some frequency
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-29

(b)

(a)

(c)

Fig. 18.50. (a) Circuit with an amplifier gain of -29 (b) Transfer function of circuit
and (c) magnified view of transfer function.

at which 180 degrees of phase shift occurs: however we can make sure that the
attenuation of the phase shift network is so large at this frequency that it beats
the gain of the amplifier and the overall loop gain is less than unity at this
frequency. This is achieved by making one pole much larger (i.e. much lower in
frequency) than all the others. This is the secret of stabilising amplifiers. The
technique is illustrated in Fig. 18.52 for the triple pole network and an amplifier
gain of 10:
In Fig. 18.52a the three poles are equivalent and the curve includes the -1/A

point (=-0.1 for a gain of 10) so the circuit oscillates. In Fig. 18.52b one pole
is dominant. This first pole switches in at a frequency ten times lower than the
other two and gives nearly 90 degrees of phase shift before the other two poles
“wake up”. By the time the two high frequency poles have got around to giving
45 degrees of phase shift each (i.e. 180 in total) the attenuation from the first
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Fig. 18.51. Transfer plot of (a) one pole (b) two cascaded poles and (c) three cascaded
poles.

pole is so large that the curve fails to ensnare the -1/A (-0.1) point (where A is
the amplifier gain) and so the circuit is stable.

Problem A 9-stage amplifier with a low frequency open loop gain of A has 9
poles. One pole turns over at frequency ω0 and the other 8 poles at ω1 = 100ω0.
Find the maximum value of A which is compatible with unconditional stability
of the amplifier.

Solution The open loop transfer function of the amplifier is:

Vout
Vin

= A

(
1

1 + j ω
ω0

)(
1

1 + j ω
ω1

)8
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Fig. 18.52. Transfer functions for a triple pole network: (a) when the poles are equiv-
alent and (b) when one pole is dominant.

At the potential oscillation frequency where the transfer function phase shift is
180◦, roughly 90◦ of this is supplied by the low frequency pole. The remaining 90◦

is provided by the 8 high frequency poles, which means each provides (90/8)◦ =
11◦. This means ω/ω1 = tan(11◦) = 0.2 and hence ω/ω0 = 20. The attenuation
of the transfer function is

1√
1 + ω2

ω2
0

× 1(
1 + ω2

ω2
1

)4 (18.36)

which is thus 0.04 at the danger frequency and this in turn implies that the
maximum allowed amplifier gain for unconditional stability is 25. The Argand
plot of this normalised transfer function is shown in Fig. 18.53a and it may
be seen that the curve indeed intersects the negative real axis at about -0.04,
thus illustrating the accuracy of this simple analysis. For comparison Fig. 18.53b
shows the corresponding transfer function for which all 9 poles are equivalent
and it is seen that the maximum allowed gain is now less than 2! In this example,
for purposes of illustration, the dominant pole was chosen to be only a factor of
100 lower than the others: in a real operational amplifier, this factor would be
much larger and the maximum possible gain for unconditional stability would
be correspondingly larger also.
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Fig. 18.53. Transfer plot for an amplifer with a gain of 25 (a) when one pole dominates
(b) when all nine poles are equivalent.

18.12.1 Local and Non-local Feedback

It may be seen from the above section that negative feedback not only divides
into categories of series and parallel, but it also can be “local” or “global”. Local
feedback is feedback applied to just one stage (i.e. round just one pole) and it
is obvious from the Nyquist plot for a single pole, Fig. 18.54 that there is no
way this can encircle the -1 point and so this kind of feedback is unconditionally
stable.
Sensible amplifier design uses a mixture of local and global feedback. The

local feedback is built in and fixed to set values in order to linearise the transfer
functions of the individual circuits blocks, rather then relying on the global
feedback to do this. The global feedback (at least in the case of OPAs) is left to
be set by the user to determine the overall gain of the device.
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Fig. 18.54. Nyquist plot for a single pole.

18.13 Useful Circuit Tricks

18.13.1 Bootstrapping and the “Ring of Three”

An interesting example circuit is shown in Fig. 18.55 which illustrates several of
the points which have been discussed above. This is a traditional “ring of three”
transistor circuit for amplifying small voltages from low impedance sources. The
820 Ohms and 1 nF in the base of the input transistor degrade the noise per-
formance slightly owing to the noise generated by the resistor, but are there
to protect the circuit from being driven nonlinear by large amplitude radiofre-
quency pickup. Two kinds of AC feedback are applied. There is local series
feedback applied to Tr1 by the 470 Ω in its emitter. Global parallel feedback is
additionally applied to the entire circuit via the 10 kΩ resistor. Tr1 also derives
its DC bias via the 200 kΩ feeding back from the second stage. Finally, and
perhaps most interestingly, the circuit employs the technique of bootstrapping
to enhance greatly the voltage gain which is provided by the second stage. The
bootstrap capacitor is the 1 microfarad between Tr3 emitter and the junction
of the two 12 kΩ resistors. The idea is that if Tr2 draws a current through its
collector load, a voltage appears across the latter and its bottom end (attached
to Tr2 collector) drops in potential. However, because of Tr3 and the bootstrap,
its the resistors top end chases the bottom, forcing the bottom to drop even
further. Huge gains are obtainable from this configuration (the reader now has
enough technical ammunition to analyse this circuit for himself and prove that
this is so). The pole associated with Tr2 has been deliberately emphasized rel-
ative to the other two by introduction of the 4.7 pF capacitor in parallel to the
devices own Miller capacitance. This stabilizes the amplifier. There is particular
subtlety in this choice of position for the low frequency pole. As seen from the
above example, the stability criterion involves the product of A and ω0. If the
gain of stage 2 is varied by changing the effectiveness of the bootstrapping, this
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Fig. 18.55. “Ring of three” circuit.

affects the overall gain A. However it varies the value of ω0 by the same factor
(since the size of the effective Miller capacitance on stage 2 is proportional to
Tr2 gain) so that the product Aω0 remains fixed and the amplifier stability is
not compromised. Another high quality transistor circuit is shown in Fig. 18.56.

470

Tr3

Tr2

Tr1

10k

2k2

220

Vout
Vin

10k

2k2

1M

Fig. 18.56. High quality transistor circuit.

This has a high input impedance, a large gain and uses both series and parallel
feedback via the 200 Ω and 10 kΩ resistors respectively. In this case, no delib-
erate pole has been introduced to stabilize the amplifier which is perfectly safe
since feedback is applied round a maximum of two stages.
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18.14 Noise

Noise, according to Ambrose Bierce, is “a stench in the ear”. To the Spin Elec-
tronician, it is an unwanted voltage which gets in the way of what he is trying
to measure. It comes in lots of unruly forms, most of which are frying, crackling
and popping noises wholly insusceptible to mathematical analysis and generally
indicative of bad circuit design, bad screening and over-cooked electronic com-
ponents, all of which are avoidable with a little care. Unavoidable noise has its
origins in thermodynamics and fortunately is modellable. Most of it comes in
two main flavours, Johnson Noise and Shot Noise. For a more detailed discussion
of noise in magnetic materials, see Bertrand Raquet’s contribution to this book.

18.14.1 Johnson Noise

Any cavity at temperature T contains blackbody radiation appropriate to that
temperature and a blackbody inside that cavity continually trades energy with
the cavity radiation bath. If bath and body are at the same temperature, dynamic
equilibrium prevails and the body emits as much power as it receives. This
situation has a 1-dimensional analogue, namely a transmission-line terminated
by a resistor equal to its characteristic impedance, each at temperature T . In like
fashion, the resistor trades electrical power with the blackbody radiation bath
in the transmission line. If dynamic equilibrium is again to occur, this implies
that any resistor at non-zero temperature must act as a voltage source. The
spontaneous voltage produced has a “white” spectrum – that is the power per
unit frequency bandwidth is uniform at all frequencies of practical interest – and
its value is given by:

V 2 = 4kBTRdf (18.37)

Where R is the resistor value, kB the Boltzmann constant, T the absolute
temperature, df the element of bandwidth considered. This noise is called John-
son noise. Note that noise generators are quantified in terms of the square of
their noise voltages. This is because noise from different sources is incoherent
and adds as power rather than as voltage.

18.14.2 Shot Noise

Diodes and transistors are characterized by a different sort of noise – shot noise,
whose origins lie in the fact that the electrical charge passing through the device
is quantised. With every device current I there is an associated noise current
generator whose magnitude is given by:

I2 = 2eIdf (18.38)

So for a bipolar transistor the noise performance is dictated by the compo-
nents shown in Fig. 18.57. Note that only 2 noise generators are shown, one for
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Fig. 18.57. Noise in a bipolar transistor.

each of the base and collector currents. The emitter noise generator is necessarily
coherent with and included in the other two.
The worked example illustrates how to use this elementary noise theory to

calculate circuit parameters essential to obtaining good noise performance in a
typical transistor circuit.

Problem A 100 ohm microphone is to be preamplified as shown in the circuit
diagram overleaf. Find the transistor collector current which gives the best noise
performance. The transformer has 100 turns on its primary windings and 1000
turns on the secondary.
Draw a practical circuit diagram showing all components needed to make a

working preamplifier.

~

RL

+V

TransformerMicrophone

RS

100Ω β=100

rB

Vs

1000100

Fig. 18.58. Amplifing a low impedance microphone.
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Solution:

Zin
~
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2
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2
CV2

rB
V2

SRVn2RS

nVS

Fig. 18.59. Noise equivalent circuit of Fig. 18.58.

n is the step-up ratio of the transformer.
V 2

RS
= 4kTn2RSdf is the source impedance voltage noise.

V 2
RB
= 4kTrBdf is the base resistance voltage noise.

V 2
C = i2C/g2m = 2eICdf/g2m is the collector shot noise referred to the base as a
voltage generator.
i2B = 2eIBdf = 2eICdf/β is the base current shot noise
Zin = β/gm.
Define R∗ = n2RS + rB in parallel with Zin.
If the circuit is well designed, Zin � source impedance. The base current shot
noise may be represented by a voltage generator so R∗ � n2RS

2eICdf

β
× R∗2

Then the total effective voltage noise generator in the base is:

V 2
Tot = 4kTdf

(
RSn

2 + rB

)
+
2eICdf

g2m
+
2eICdf

β
R∗2

The last two terms are IC dependent, so we must minimize their sums with an
appropriate choice of IC

=
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=
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+
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(

1
402IC

+
IC

β
n4R2

S

)

=
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which has the form x+ 1/x which has a minimum value if x = 1 i.e.

IC =
β1/2

40n2RS

putting in values gives

IC =
10

40× 102 × 100 = 25µA

Practical Circuit

220 kΩ

10µF

25µA

~

RS

Vs

n1

330 kΩ

560 kΩ

100 kΩ

+2.5 V

+9 V

Fig. 18.60. Practical preamplifier circuit for Fig. 18.58.

Zin =
β

gm
=
100× 10−6

40× 25 ∼ 100 kΩ � n2RS = 10 kΩ

so
1
gm

= 1kΩ

Zc must be 1 kΩ at the lowest audio frequency of 20 Hz, so

1
2πfC

� 1 kΩ ⇒ C ≥ 1
6× 20× 103 ∼ 10µF

It is apparent from this calculation that there is a correspondence between
the source impedance and the collector current needed for optimum amplifier
noise performance. For very low source impedances, this collector current may
take impractical values. The solution here is to use an audio transformer to
transform the source impedance to a higher value as described previously in the
section on transformers.
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Fig. 18.61. Noise in a FET.
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Fig. 18.62. The circuits offer the same noise performance but (b) is easier to analyse.

The noise analysis of FET circuits proceeds in a very similar fashion to
that outlined above except that the relevant noise generators in this case are
as shown in Fig. 18.61. It is worth noting in passing that applying feedback
to a circuit has no effect on the noise performance (assuming that the noise
generators associated with the added feedback resistors are insignificant). It is
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therefore advisable to remove the feedback from a circuit before proceeding with
its noise analysis since the job is then considerably simpler. An example is shown
in Fig. 18.62 for the very elementary case of an emitter series feedback resistor.
The feedback is removed by shifting the earth point as shown. The argument
which established the magnitude of Johnson noise at a particular temperature
was a thermodynamic one. It is no longer valid if batteries are connected to the
components involved since the Fermi level of the system is no longer a constant
and thermodynamic equilibrium does not pertain. Resistors are generally nois-
ier when they carry electrical current. By contrast, some devices are actually
quieter when biased. For example, a diode with dynamic impedance R gener-
ates half the noise power of a resistor of the same impedance. Another useful
example is shown in Fig. 18.63 where an active circuit is used to generate the
characteristic impedance necessary to terminate a transmission line. The actual
resistor involved has a value 1+A times larger than the impedance it is simulat-
ing and hence generates correspondingly less noise power than if the transmission
line is terminated by a passive resistor of the same value as the characteristic
impedance.

-
AZ0

( ) df
ZA1

kT4
i

0

2

n +
=

2
ni

( ) 0ZA1+

Fig. 18.63. Reducing noise at the terminal end of a transmission line.

18.15 The DC Motor

No chapter on electrics is complete without at least a rudimentary discussion of
electrical machines. Here we have chosen the DC motor as an example which is
sufficiently simple to afford easy analysis, yet serves to give a flavour of how all
such devices behave.
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A DC motor consists of a rotor of magnetic material which is wound with
coils to which electrical connection is made via a commutator which reverses
those connections during the cycle. The rotor rotates in a static magnetic field
created either by a permanent magnet or by a set of field windings.
Passing a current through the rotor results in its experiencing a torque. When

it starts to move it cuts the field lines with which it interacts and this generates
a back emf which opposes the current in the rotor which causes the motion.
The equivalent circuit for a DC motor then looks as follows: The back emf

R

VS

I

E=KΩ

Fig. 18.64. Equivalent circuit for a DC motor.

E is proportional to motor speed , i.e. E= K
′
W

Evidently the torque is given by :

τ = BfieldCIrotor = KI (18.39)

But the power delivered is
τ = IE (18.40)

Which leads to
KI = IK

′
(18.41)

Thus we have the interesting result that K = K
′
, i.e. that the same constant

determines torque and back emf.
If the field is provided by a fixed magnet, then the factor K is fixed. However

if the motor is of the field-winding type, then changing the field winding current
varies the value of K and the motor is much more versatile. The field is linear
in Ifield for small currents but limits as magnetic saturation is approached.
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18.17 Concluding Remarks

In this chapter we have given a very brief introduction to some of the elec-
tronic delights which all Spin Electronicians should be conversant. The inter-
ested reader is referred to Horowitz & Hill “The Art of Electronics” CUP 1989,
for further edification.
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19.1 Read Heads and Magnetic Data Storage

Hard disk magnetic data storage is increasing at a steady state in terms of units
sold, with 144 million drives sold in 1998 (107 million for desktops, 18 million for
portables, and 19 million for enterprise drives), corresponding to a total business
of 34 billion US$ [1]. The growing need for storage coming from new PC operat-
ing systems, INTERNET applications, and a foreseen explosion of applications
connected to consumer electronics (digital TV, video, digital cameras, GPS sys-
tems, etc.), keep the magnetics community actively looking for new solutions,
concerning media, heads, tribology, and system electronics. Current state of the
art disk drives (January 2000), using dual inductive-write, magnetoresistive-
read (MR) integrated heads reach areal densities of 15 to 23 bit/µm2, capable
of putting a full 20 GB in one platter (a 2 hour film occupies 10 GB). Densities
beyond 80 bit/µm2 have already been demonstrated in the laboratory (Fujitsu
87 bit/µm2–Intermag 2000, Hitachi 81 bit/µm2, Read–Rite 78 bit/µm2, Seagate
70 bit/µm2 – all the last three demos done in the first 6 months of 2000, with
IBM having demonstrated 56 bit/µm2 already at the end of 1999). At densities
near 60 bit/µm2, the linear bit size is ∼ 43 nm, and the width of the written
tracks is ∼ 0.23 µm. Areal density in commercial drives is increasing steadily at
a rate of nearly 100% per year [1], and consumer products above 60 bit/µm2 are
expected by 2002. These remarkable achievements are only possible by a stream
of technological innovations, in media [2], write heads [3], read heads [4], and
system electronics [5]. In this chapter, recent advances on spin valve materials
and spin valve sensor architectures, low resistance tunnel junctions and tunnel
junction head architectures will be addressed.

Since the beginning of the nineties, and for areal densities > 1.5 to 3 bit/µm2,
MR read sensors have gradually replaced inductive readers. The MR sensor
is shielded in order to increase linear resolution and improve high frequency
response [6]. Figure 19.1 shows schematically the shielded MR sensor used for
disk applications. MR heads for areal densities up to 8 bit/µm2 were based on
the anisotropic magnetoresistance (AMR) effect [7], where the sensor resistance
is proportional to the square of the cosine of the angle between the magnetization
and the sense current. For some of the higher density drives using AMR sensors,
the MR element consisted of a 15 nm thick Ni80Fe20 sensor, with 0.7 to 1 micron
trackwidth (W ), 0.5 to 0.7 micron height (h), giving an MR signal close to 2%.

M.J. Thornton and M. Ziese (Eds.): LNP 569, pp. 464–488, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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 Fig. 19.1. Schematic of a shielded read head.

To linearize sensor output, a second Ni-Fe layer separated from the active
Ni80Fe20 layer by an oxide or high resistance layer, was used to magnetostatically
bias the active Ni80Fe20 magnetization to 45 degrees with respect to the sense
current direction, in what is called a Soft Adjacent Layer configuration (SAL–
MR) [8]. For areal densities typically above 8 bit/µm2, it becomes difficult to
maintain the desired Bit Error Rate with AMR sensors. A first generation of
spin valve heads [9] with MR from 6% to 8% came into production at the end
of 1997 from IBM, soon followed by Fujitsu, and Toshiba. For 15.5 bit/µm2,
written tracks are around 0.6 µm, and the bit length is 70 to 75 nm, with a read
head trackwidth of 0.5 µm. With the demand for even higher areal densities
(150 bit/µm2, bit size 40 nm, written track width = 0.15 micron), read sensor
trackwidth will decrease to 0.1 micron. For this trackwidth, the output of the
present first generation of spin valve heads becomes too low, and a second gen-
eration of read-out heads (MR close to 20%) will come into play. At this stage
and beyond, low resistance spin tunnel junction heads may become competitive.

19.1.1 Spin–Valve Sensors

Spin valves were introduced in 1991 [10], first sensors designed and tested in
1993–1994 [11], and first head prototypes presented in 1994 [9]. A good re-
view of the spin valve mechanism is given in reference [12]. The spin valve
consists of two ferromagnetic layers, separated by a Cu spacer (see Fig. 19.2a,
where a bottom-pinned simple spin valve structure is shown). One of these lay-
ers has its magnetization pinned, while in the other it is free to rotate. The
free ferromagnetic layer forms the sensing element and usually consists of Co
or Co90Fe10 or a Ni80Fe20/Co or Ni80Fe20/Co90Fe10 bilayer. The pinned ferro-
magnetic layer (Co or Co90Fe10) is coupled by exchange to an antiferromag-
net (for example Mn76Ir24, or Mn50Pt50) [13] or a synthetic antiferromagnet
(NiO/Co/Ru/Co, Mn76Ir24/Co90Fe10/Ru/Co90Fe10) [14]. Free and pinned layer
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easy axis can be set either parallel or orthogonal. Typical MR values for these
first generations of top-pinned or bottom-pinned spin valves ranged from 6% to
10%. Here the top-pinned or bottom-pinned designations relate to spin valves
where the pinned layers are above or below the Cu spacer respectively. For head
applications, and apart from large MR values, the exchange field created at the
pinned layer/exchange layer interface is very important. The blocking temper-
ature (temperature where the exchange field vanishes) should exceed 300◦C,
to prevent accidental de-pinning of the pinned layer during head fabrication or
head life. Also the exchange energy should be large (> 0.2 mJ/m2) such that
the exchange field prevails against demagnetizing fields at head level. Also the
corrosion resistance of this exchange layer should not be worse than that of
Ni80Fe20 used as reference [15]. Another factor to take into account is the cou-
pling field Hf between the free and pinned layers, which should not exceed 0.8 to
1.2 kA/m, to allow for proper biasing. This coupling arises from the competition
between ferromagnetic Néel coupling (caused by interface roughness), indirect
exchange coupling across the Cu spacer, and the coupled demagnetizing fields
of both layers in patterned sensors.

For a shielded spin valve sensor, the head output is given by [16],

∆V0−p = (∆R/R) R✷ I (W/h) (1/2) 〈cos (Θf − Θp)〉 (19.1)
〈cos (Θf − Θp)〉 = E ΦABS/ (twµ0MS) . (19.2)

Here, ∆R/R is the maximum MR signal of the spin valve sensor (6 to 8% in first
generation spin valves), R✷ is the sensor square resistance (16 to 20 Ω/✷), W
the trackwidth of the read element, h is the sensor height, I the sense current,
Θf is the angle between the free layer magnetization and the current direction,
and Θp the angle between the pinned layer magnetization and the current. The
average 〈...〉 is taken over the height of the sensor. The media-flux leakage to the
shields is described by the head efficiency E = [tanh(h/2lc)]/(h/lc), with lc, the
flux propagation length defined as, lc =

√
tµgR/2, with µ the relative free layer

permeability, gR the shield to sensor separation (read half gap), and t the free
layer thickness, with ΦABS the media flux entering the sensor. As can be seen
from (19.1) and (19.2) the head output depends critically on the head geometry,
spin valve MR signal, and media parameters.

Table 19.1 shows the required read head parameters for areal densities up to
124 bit/µm2, aiming at a head output in the 2 to 5 mV/µm of trackwidth [17].
It can be seen that the MR signal must be pushed to the 20% range, the free
layer thickness must be decreased below 2 nm, and the read gap will decrease to
50 nm. In the following section, recent developments in spin valve materials and
structures are reviewed. Also low resistance tunnel junctions are introduced, as
possible candidates for read elements at areal densities near 150 bit/µm2.

Consider first MR signal enhancement. This has been achieved in two ways.
First, a dual symmetric spin valve can be fabricated where two spin valves,
one bottom pinned, and the other top pinned, share the same free layer. MR
signals can surpass 20%. Although suggested some years ago with the structure
NiO/Co/Cu/Co/Cu/Co/NiO [18], only recently Read Rite and Fujitsu produced
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Fig. 19.2. (a) Schematic of a simple 4 layer spin valve structure. (b) Specular spin
valve with Nano Oxide Layers. (c) Spin valve with both synthetic free and synthetic
pinned layers.



468 P. P. Freitas

head prototypes with practical exchange layers (Mn76Ir24, Mn50Pt50) working
at densities greater than 30 bit/µm2 [19]. Due to the larger thickness of this dual
symmetric spin valve, it is not foreseen that this structure will prevail at much
higher densities, since the sensor itself can hardly be thinner than 35 nm, for
an available read gap tending to 50 nm. Another development is the control of
electron scattering at the external spin valve surfaces. If the surfaces are made
to be specular with respect to electron scattering, than the spin valve signal can
approach that of an equivalent GMR multilayer. For NiO/Co/Cu/Co/NiO spin
valves, MR signals close to 20% were obtained, but without good exchange prop-
erties [20]. More recently, Toshiba suggested the use of Nano Oxide Layers (NOL)
incorporated on both sides of the Co-Fe/Cu/Co-Fe structure of a standard spin
valve [21]. This allows the use of state of the art spin valve architectures in what
concerns exchange fields, but increasing the MR into the 15 % to 20% range.
Figure 19.2b shows one of our own specular spin valves [22], where the inclusion
of NOL layers increases the MR ratio from 6% to 14%. The method of fabrica-
tion of the NOL layers, their optimum thickness and their thermal stability are
at present under study.

Table 19.1. Read head parameters for increasing areal densities

year density w 2gR t ∆R/R sensor

(bit/µm2) (µm) (nm) (nm) (%) type

1998 5–8 1.5–0.8 250–200 12–9 1.8–1.5 AMR

2000 15 0.5 140 5 6.5 sv

2003 62 0.25 70 2.5 12 sv

2005 124 0.18 50 1.8 18 sv or TJ

Concerning exchange fields, two approaches were followed to increase ex-
change and blocking temperature. The first was the use of a synthetic antifer-
romagnet (SAF) consisting of two Co or Co-Fe layers with similar thickness
strongly AF coupled through 0.5 to 0.7 nm Ru [14] (see Fig. 19.2c). This AF
coupling is of the order of 0.7 mJ/m2. To avoid a spin flop transition under
an external transverse field [23], a conventional exchange layer must be cou-
pled to one of the ferromagnetic layers. Although this strong AF coupling has a
weak temperature dependence [24], this is not so for the conventional AF that
must still have an optimum blocking temperature, but no longer large exchange.
These SAF structures have another advantage. Since the effective moment of
the pinned layer is low, its contribution to the demagnetizing and coupling fields
acting on the free layer is much weaker than in conventional spin valves. SAF
layers have also been incorporated in dual (symmetric) spin valve structures [19].
Another recent development was the increase of exchange energies achieved in
bottom pinned, Mn76Ir24 and Mn50Pt50 spin valves (> 0.3 to 0.4 mJ/m2), by
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proper growth control, and microstructure tailoring [25]. Exchange fields in ex-
cess than 80 kA/m can now be obtained in spin valve structures with blocking
temperatures above 300◦C. Finite size effects were observed for the blocking tem-
perature [26]. Higher blocking temperatures are obtained with thicker AF films,
but higher exchange fields are obtained for thinner AF layer thicknesses [27].
Combined SAF structures using Mn50Pt50 as reference antiferromagnet seem to
provide the best thermal stability, and the largest exchange. Table 19.2 summa-
rizes the properties of some conventional exchange materials (Fe50Mn50, NiO)
and some of the newer, more promising structures [4,13,15,25,32].

Table 19.2. Comparison of exchange bias materials

materials Tb exchange corrosion requires anneal?
energy resistance

(◦C) (mJ/m2)
Fe50Mn50 [15] 150 0.13 bad no
NiO [15] 190 < 0.1 good no
Mn78Rh22 [15] 235 0.2 fair no
Mn76Ir24 [25] 300 0.2–0.4∗ fair yes

∗(bottom sv, (bottom
after anneal) spin valves)

Mn50Ni50 [13,15] 375–425 0.27–35 fair/good yes
Mn50Pt50, 350 0.3–0.4 good yes
MnPdPt [13,32]
(Mn76Ir24, (see text) > 0.4 good/fair yes
MnPdPt,NiO) (because of MnPt
/Co/Ru/Co [4,32] and MnIr layers)

The third avenue for spin valve sensor improvement, is concerned with the
reduction of the thickness of the free layer. Here essentially two approaches are
proposed, first the use of a “spin filter” spin valve, where a high conductivity
layer (normally Cu) is placed under the Ni80Fe20 free layer [28], and the second
the use of a synthetic free layer [29]. As seen from (19.1) and (19.2), as the mag-
netic thickness of the free layer is reduced, the output signal of the head increases.
INESC’s approach [30], has been to use a synthetic ferrimagnetic free layer con-
sisting of two ferromagnetic layers antiferromagnetically coupled through a thin
Ru layer. It is quite important to control the coupling and thickness of the two
layers, since this synthetic free layer must rotate coherently, as a single unit with
effective magnetic thickness teff = (Mata − Mbtb)/〈M〉, but physical thickness
ta + tb, contrary to the scissor-like motion of the magnetization in a SAF. With
this architecture, the full spin valve MR signal can be maintained as the free
layer magnetic thickness is reduced to less than 1 nm [30]. As with the SAF,
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the synthetic free layer will have a reduced demagnetizing field, and reduced
coupling field. Since these structures posses Ru thin layers that hinder diffusion,
and good antiferromagnets as reference layers for the synthetic free and pinned
structures, they appear as good candidates for read element use. Also the ther-
mal stability is good [30]. Figure 19.2c shows a spin valve developed at INESC
using both synthetic free and synthetic pinned layers [30].
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Fig. 19.3. Cross-section of the shielded spin valve structure.

Once good materials properties are achieved, a spin valve sensor must be
fabricated [11]. The spin valve film is patterned into a stripe with dimensions
L (magnetic length), W (trackwidth, distance between contact pads) and h
(height). The pinned layer easy axis is in the transverse orientation. The free layer
easy axis is in the longitudinal orientation. Upon excitation by a transverse signal
field, the free layer magnetization rotates out of the longitudinal direction. Due
to non-uniform demagnetizing fields in the stripe, the angle of rotation depends
on position along height. The sensor output is given by (19.1). For a properly
biased sensor, in the quiescent state (no applied signal field), 〈Θf〉 � 0◦, and
〈Θp〉 � 90◦. Biasing is achieved with the sense current field. For small signal
fields, the magnetization of the free layer rotates away from the longitudinal
orientation and sensor resistance deviates linearly with field. For a recording head
application, the single spin valve sensor is placed between magnetic shields to
improve linear resolution. Figure 19.3 shows the cross section of the shielded spin
valve structure. In the shielded configuration, all the demagnetizing fields are
reduced and the free layer will require extra longitudinal stabilization [31], this in
our case, is provided by permanent magnets (Co66Cr16Pt18). Figure 19.4 shows
the typical sensor used in a disk head (abutted permanent magnets). Table 19.3
shows head and media parameters for a 31.6 bit/µm2 recording demonstrations
[32].

According to Table 19.1, and for densities near 150 bit/µm2, spin tunnel
junctions may appear as alternative candidates to spin valves as read elements
in heads.
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Table 19.3. Head and media parameters for a 31.6 bit/µm2 demonstration

Head and 31.6 bit/µm2 SV,
media parameters Fujitsu 1999

media Hc 270
(kA/m)
media Mrt 4.2
(mA)

magnetic spacing 3.1
(nm)

write trackwidth 0.45
(µm)

write head polarization 1.6
(T)

read trackwidth 0.36
(µm)

free layer thickness 3.5
(nm)

MR height unknown
(µm)

read gap 0.11
(µm)
output 2.5

(mVpp/µm)
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19.1.2 Naturally Oxidized Spin–Tunnel Junctions

Table 19.4. Properties of naturally oxidized junctions

Area TMR R × A Structure oxidation
(µm2) (%) (Ω × µm2) (units: nm)

IBM 1.4× 2.8 20.3 61 Ta5/Al25/NiFe4 natural
/MnFe10/Co4/Ru0.7

/Co3/Alt/...
2× 4 21.4 61

TDK 1× 1 23.2 49.4 Ta5/NiFe3/CoFe2 natural
/Alt/CoFe3

/RuRhMn10/Ta5
1× 1 25.8 36.4 Ta5/NiFe3/CoFe2/Alt anneal at 250◦C

/CoFe3/PtMn30/Ta5
1× 1 31.2 36.1 Ta5/NiFe3/CoFe2 anneal at 250◦C

/Alt/CoFe3/Ru0.9

/CoFe2/PtMn30/Ta5
0.237 31.6 33.5

INESC 3× 1 20.6 63 Ta7/NiFe20/CoFe3 natural
/Al0.7/CoFe3/MnIr18 + anneal at 190◦C

/Ta3/TiW15

4× 1 22.6 66 anneal at 190◦C

4× 1 20.7 60 anneal at 210◦C

3× 1 18.2 39 Ta7/NiFe20/CoFe3 anneal at 215◦C
/Al0.6/CoFe3/MnIr18

/Ta3/TiW15

In the spin-dependent tunnelling effect, electrons tunnel across an insulating
barrier between two ferromagnetic electrodes. The magnetoresistance of such a
junction is proportional to the product of both electrode polarizations. Although
known since the mid sixties, only recently have significant room temperature
MR signals, ranging from 20–40% been obtained [33,34]. This opened a realm
of practical applications, among which, two of the most important are non-
volatile tunnel junction random access memories (TJRAM) and MR sensors
for very high-density magnetic storage (HD drives). In this section, only the
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naturally oxidized junctions will be described, since up to now they have provided
the lowest junction resistances, needed to compete with spin valves in terms
of signal to noise ratio. At the heart of tunnel junction fabrication lays the
barrier fabrication. For read head applications, junction resistance must be less
than 10 Ω × µm2 [35,36]. Table 19.4 compares electrode structure, and junction
characteristics for naturally oxidized junctions from three labs (IBM [34], TDK
[36], INESC [36]). As of June 2000, resistance × area products of 20 Ω × µm2

have been reported by these labs and Seagate, with TMR in the vicinity of 20%.

Tunnel 
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ox
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ox 3000A
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gap oxide

Tunnel junction

(b)

Fig. 19.5. (a) Schematic cross-section of the tunnel junction head (b) ABS picture of
a tunnel junction head with a 60 nm read gap.

Concerning the junction electrodes, all improvements made on spin valve
technology are in general applicable here. One point of concern at this moment
is the thermal stability of the ultra thin natural oxidized barriers. Junctions with
good resistance and TMR characteristics, (tAl = 0.6 or 0.7 nm, TMR > 20%,
R × A < 100 Ω × µm2) show a thermal stability of at most 250◦C. This is not
good enough. Figure 19.5a shows schematically the first tunnel junction head
structures being fabricated at INESC, and Fig. 19.5b shows the sensor at the
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air bearing surface (ABS) level [36]. In our design, the TJ is at the ABS, and
contacts are made through the shields. Lateral permanent magnet hard bias
is used. The head read gap is 60 nm. At the moment of writing this article,
first completed head prototypes show loss of TMR signal at the final lapping
stages. TDK has recently announced (January 2000) working TJ read heads at
3Gbit/in2 level, using a flux-guide-type structure, where the TJ read element is
recessed from the air-bearing surface. At Intermag 2000, tunnel junction read
head prototypes were also presented by Seagate, and Fujitsu. Apart from the
required low resistance, gap smearing turns out to be an important factor to
take into account in the design and fabrication of tunnel junction read heads.

19.2 Tunnel Junction Random Access Memories
(TJMRAM)

There is a strong interest in non-volatile memory devices based on magnetic
materials, Magnetic Random Access Memories (MRAMs), due to their non-
volatile characteristic, radiation hardness, non-destructive read-out, low-voltage,
and very large (> 1015) read-write cycle capability [37]. MRAMs can be as fast
as Dynamic Random Access Memories (DRAMs), and almost as small as Static
Random Access Memories (SRAM) in cell size. To compete with CMOS embed-
ded memories, they must be fabricated with < 125 nm features, bringing several
technological issues regarding micromagnetics and fabrication issues for deep
submicron magnetic elements. MRAMs compete also with Ferroelectric Random
Access Memories (FERAMs) for non-volatile memories. Power consumption is
here a major issue. They compete directly with Flash memories used where speed
is not a major concern (i.e. in some storage applications). Write speed for Flash
technology is in the µs range in comparison of few ns for MRAMs. Functional
devices have been fabricated using the anisotropic magnetoresistance (AMR) ef-
fect, finding niche markets in satellite and military applications. With the rapid
improvements in giant magnetoresistance (GMR) and spin dependent tunnel
junctions, higher signal levels became available and renewed interest has arisen
in MRAM fabrication [34,38,39]. Figure 19.6 shows schematically the MRAM
matrix, where each cell consists of a tunnel junction. Notice the buried world
line needed for write (diode or transistors needed for read selectivity are not
shown). In particular for tunnel junctions, the observed tunneling magnetoresis-
tance (TMR) at room temperature now reaches values around 40% [34]. These
resistance changes can be observed in low field ranges, 1.6–2.4 kA/m, and are
higher than those presently achieved with spin valve or GMR effects. As the ini-
tial high resistivity (MΩ × µm2) handicap of tunneling junctions was overcome,
by lowering its resistance to values of 1–10 kΩ × µm2 [2,34], its integration in a
memory device became realistic.

Figure 19.7 compares tunnel junctions fabricated at INESC with different
oxidation technologies. Both plasma oxidation or ion beam oxidation provide
good results with R × A values controllable from 200–500 Ω × µm2 and up. In
all cases, an Al layer, 0.7 to 1.1 nm thick is deposited, and then the oxidation
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Fig. 19.6. Schematic layout of the MRAM matrix, where each cell consists of a tunnel
junction.

time tuned to provide perfect oxidation of the Al2O3 barrier, without leaving
unoxidized Al, or oxidizing the electrodes. The resistance value influences two
important parameters in memory applications. Because of the insulator between
the electrodes, junctions also act as capacitors. The junction’s time constant,
RC, sets a lower limit on the speed a data bit can be accessed. For a stand-alone
junction, it is therefore desirable to have the lowest possible value for R, since
the thickness required for tunnelling, 0.7–1.1 nm, and the small area, < 1 µm2,
determine the value of C. The requirement of a 1 ns time constant, would result
in a resistance under 23 kΩ for a 1 µm2 junction area. When the junction is in
series with a diode, its resistance should be matched to that of the diode for max-
imum signal in the series device [39]. For MRAM fabrication, the TJ is deposited
onto a properly planarized CMOS wafer incorporating transistors or diodes and
word lines, and then a backend metallization process is realized to connect the
junctions in the memory matrix [34,40]. Standard backend technology for met-
allization of integrated circuits requires annealing in forming gas at 400–450◦C
to heal transistor damage due to plasma processing. Thus for perfect CMOS
compatibility, tunnel junctions should be able to cope with this final sintering
step. We have previously shown that tunnel junctions can withstand thermal
treatment up to 300◦C [41], actually improving their performance. Figure 19.8
exemplifies the thermal stability of such devices. Interdiffusion of the exchange
layer into the CoFe electrode has been pointed out as one of the causes of the loss
of TMR signal above 300◦C [41]. Incorporation of SAF structures as exchange
layer does improve the thermal behavior, but a definite experiment where Ta
interdiffusion stoppers were incorporated failed to stop the TMR decrease [42].
This means that either structural changes in the barrier itself, or polarization
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changes at the interface level must be responsible for the major TMR loss above
400◦C.
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In a memory array matrix, to selectively read a bit, current must flow through
one single junction and alternative current paths must be blocked. This can be
achieved making use of current directionality in diodes or on/off transistor char-
acteristics [34,38,40]. In the simplest case the basic memory cell will be a diode
connected in series with a tunnel junction. Figure 19.9 shows schematically the
vertical integration of a tunnel junction with an amorphous Si diode [38]. For
the combined device, changes in current up to 20% are obtained when the free
layer is switched (see Fig. 19.12). The problem with this device is the high re-
sistance of the diode at the required working voltage. To lower this resistance
means increasing the diode area to tens of µm2. For higher density applications,
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transistors seem a better solution. For write selectivity, buried world lines are
used such that two orthogonal fields can be created at each junction that can
switch the free layer [40]. Figure 19.10 shows schematically the integrated junc-
tion on top of 1.2 µm buried Al lines, and Fig. 19.11 shows the asteroid curve
for a 3 × 1 µm2 junction.

Under study is the optimum shape of the junction top free layer in order
to minimize Barkhausen noise, and to promote single step, coherent switching
[43]. At present switching times of few ns were demonstrated in real matrix cells
[44], and experiments are ongoing with specially-designed chips to follow the
switching mechanism with tens of picosecond resolution. Figure 19.12 shows a
3 × 3 bit memory, where the diodes are 200 × 200 µm in size, and junctions are
3 × 1 µm2. Notice that 7 of the 9 bits have almost equal transfer curves, one



478 P. P. Freitas
 

 
 
 
 

 
 
 

 

Fig. 19.9. Vertical integration of a tunnel junction with an amorphous Si diode.
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Fig. 19.10. Tunnel junction integrated on top of 1.2 µm buried Al lines.

has a damaged diode, and another a shorted junction. This example shows only
some of the reliability problems that exist when moving from prototype level to
a full memory device.

19.3 Other Sensor Applications; Current Monitoring,
Position Control, Bio–Molecular Recognition.

Magnetic field sensors are widely used in a variety of less quoted applications
encompassing field, current, position and speed monitoring [45]. Depending on
the range of field to be detected, linearity, offset, and temperature requirements,
several device categories are available. Hall effect devices [46], flux gates [47],
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Fig. 19.11. Asteroid curve for a 3× 1 µm2 junction.

anisotropic magnetoresistance sensors [48] and giant magnetoresistance sensors
(both spin valve and sensors based on AF coupled multilayers) [49,50,51,52,53].
Wheatstone bridge configurations with 4 sensors are usually used to reduce off-
set and increase output. Compared with anisotropic magnetoresistance sensors,
spin-valve sensors, have almost one order of magnitude higher signals, and both
cover linear ranges up to few kA/m. GMR multilayer sensors have higher linear
ranges, and are promising candidates for detecting magnetic fields in a range of
3–100 kA/m, where they compete with Hall effect sensors but have order of mag-
nitude higher outputs. For Wheatstone bridge sensor architectures, the success
of the final device depends on how well the 4 GMR or spin valve sensor resis-
tances are matched, how equal in amplitude are the opposite biasing magnetic
fields applied to contiguous sensors, and how equal are their transfer curves un-
der an applied field. Here, a new GMR sensor configuration, with 4 active GMR
elements [53], biased by integrated permanent magnets is presented.
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Fig. 19.13. GMR bridge sensor biased by integrated permanent magnets.
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Fig. 19.14. GMR bridge output, as a function of an uniform external applied field.

Figure 19.13 shows the schematic diagram of the first type of GMR multilayer
bridge sensor where pairs of permanent magnets (PM’s) with the same Mrt
value (remanence × thickness product), but different coercivities (Hc) create the
biasing fields. For our particular application, a linear range of 10 to 15 kA/m was
required for the bridge. Therefore, permanent magnets were designed, in order
to shift the individual GMR elements transfer curves by about ±16 kA/m. The
GMR multilayer was chosen to have a linear range in excess of 40 kA/m. As
shown in the top view, CoPt PM’s having higher coercivity Hc1 are placed on
both sides of two GMR elements (R1 and R4), while CoPt PM’s with lower
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coercivities Hc2 are placed near GMR elements (R2 and R3). In order to create
the required opposite biasing fields in contiguous GMR elements, the permanent
magnets need to be magnetized after chip completion in opposite directions. The
difference in coercivities must be large enough to meet this requirement. The
magnitude of the biasing field is controlled by the Mrt value of the PM. Also
shown is a cross section of the device, with indication of all critical dimensions.
Figure 19.14 shows the type I bridge output for a device where the linear range
is ±16 kA/m. Each single sensor has a dimension of 3 × 190 µm2. Total bridge
resistance is 900 Ω. The gap between the two CoPt permanent magnets is 5 µm.
For a 20 mA current flowing through the bridge, an output of ±0.6 V is obtained,
leading to a sensitivity of 2.12 mV/(V kA/m). Bridge offset is 40 mV. The
linearity deviation is below ±1% (see inset). The hysteresis observed in the
linearity deviation versus field curve comes from a 80 A/m hysteresis in the
bridge transfer curve.

One application of this bridge design is given below. The precision placement
of objects in moving transport trays is a common problem in automatic assembly
lines. A test jig was fabricated where a robot needs to tightly place an object in a
recessed box, precision machined in a tray. The uncertainty in the tray position
(coming from the transport conveyor belt) is few mm from a preset value. The
tray carries two small ferrite dipole magnets with dipole axis perpendicular to
the tray plane, creating fields of few kA/m with cylindrical symmetry, few mm
away from the tray surface. For successful placement and removal of objects
from their places in the tray, the relative position of the robot grip with respect
to the tray must be know to less than 100 µm. This was achieved by designing
and fabricating a dual GMR bridge sensor, capable of measuring two orthogonal
field components, with high spatial resolution [54]. The sensor is incorporated in
the robot grip, and is scanned over the preset magnet positions that need to be
known only within an area of 0.5 cm2. The robot (from SONY, see schematics in
the inset of Fig. 19.15b can then zero in to the “zero field” position, finding the
absolute X-Y position of the reference magnets within 10 µm in each direction.
The GMR elements in the two bridges are rotated by 90 degrees, and are sensitive
to the field component perpendicular to the sensor length.

The integrated permanent magnets biasing the two bridges have different co-
ercivities (48 kA/m and 96 kA/m respectively) allowing fringe field setting after
chip fabrication. Individual bridge sensitivity in each direction is 4.37 mV/(V
kA/m). Figure 19.15a shows the sensor spatial resolution for two orthogonal
field directions, measured for a sensor-tray separation (d) of 6.5 mm and for a
sensor-tray separation (d) of 3.5 mm (17 µV/µm). These values are given at the
linear response region of the bridge, a region of about ±5 mm around the center
of the magnet. In both cases a scan of ±5 cm over the magnet was realized in
steps of 500 µm. The bridge drive current was 9.5 mA. Figure 19.15b shows
the result of an overnight positioning test in one direction (X) (d = 3.5 mm),
where the robot performed sequentially 1900 positioning cycles. The robot made
a maximum error in positioning of 11 µm (180 µV), which is actually close to
its minimum step. The insensitivity of the positioning to sensor offsets and elec-
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Fig. 19.15. (a) (left panel) Dual GMR sensor spatial resolution for two orthogonal field
directions, measured for a sensor-tray separation (d) of 6.5 mm and for a sensor-tray
separation (d) of 3.5 mm (17 µV/µm). (b) (right panel) Result of an overnight posi-
tioning test in one direction (X) (d = 3.5 mm), where the robot performed sequentially
1900 positioning cycles.

tronic or thermal drifts in a time scale much larger than one positioning cycle (10
to 20 s), stems from the positioning algorithm; the sensor determines its offset
voltage away from the magnets, in the grip home position (earth + environment
fields), and then goes over the magnet and positions itself until the measured
voltage over the magnet equals the home-position offset voltage (it should coin-
cide with the position with zero magnet fringe field). In summary, the fabricated
sensor successfully allows the positioning of objects on a transport tray, with
an absolute accuracy of 10 µm tested over more than 1900 cycles, insensitive to
thermal or electronic offset drifts (test done along one direction only).

A second application of this new generation of magnetoresistive sensors, is the
recognition of interactions at the level of bio-molecules (proteins, DNA strands,
etc.), that have been previously labeled with a magnetic tag [55]. Here, the
bio-molecule is tagged with a polymer particle, of radius varying from 100 nm
to few µm, containing magnetite. The total particle moment is of the order
of 107 to 108 µB. Figure 19.16 shows results of first experiments at INESC
where NANOMAG–D magnetic nanoparticles from Micromod Partikeltechnolo-
gie, Germany, are clustered near Al lines patterned on glass or Si substrates.
These particles chemically bond to the required bio-molecules, and the group is
then magnetically or chemically anchored to a site on a chip, which contains a
2D field-imaging array, consisting of micron size or sub-micron size magnetore-
sistive elements. Both tunnel junctions and spin valves are being evaluated as
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Fig. 19.16. Magnetic nanoparticles, with biologically active coatings, clustered on top
of current carrying Al lines. A 2D magnetoresistive sensing array is being fabricated
to detect particle immobilization, and at a second stage, perform nanoscale molecular
recognition.

sensing elements. The goal is to be able to detect when a second bio-molecule
attaches to the anchored one, involving a differential field measurement, in a
somewhat noisy environment. This will allow detection of molecular recognition
in nanometer size volumes, a feat up to now not possible.

So far only spin valve and GMR sensors have been discussed. Sensors based
on spin tunnel junctions are also possible, profiting from the higher signal, and
larger resistance of the sense element. However, S/N ratio must be addressed
now. Three main noise sources exist in magnetoresistive sensors (AMR, GMR,
and TMR). First, 1/f noise (DC to 10 kHz), that also exists in non-magnetic
systems is dominant at low frequencies. Magnetic systems show an excess 1/f
noise [56] that depend on the applied field and sense current, with large excess
noise occurring in the high sensitivity points of the R vs H sensor transfer curves.
This excess 1/f noise was correlated with thermal fluctuations of the magnetic
moment of the free magnetic layer, and decreases once a large field is applied,
reducing down to the non-magnetic metal level for saturating fields. At higher
frequencies, Johnson noise (in resistors) and or shot noise (in tunnel junctions)
become dominant. The thermal resistance noise (Johnson) is caused by the ther-
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mal smearing of the Fermi–Dirac electron distribution function near the Fermi
level. The shot noise in metal/insulator/metal structures is caused by the dis-
crete nature of the charge traversing the barrier. The noise limits the ultimate
resolution of magnetoresistive sensors, and is basically independent of the mag-
netic structure. A fourth noise source of thermal origin is the magnetic domain
configuration instability, leading to wall displacement, and sudden jumps in the
magnetic moment of the sensor. This noise source is avoided by proper biasing
schemes, insuring that no domain walls are ever present in the active region
of the magnetoresistive sensor – something easier said than done! Barkhausen
noise is also present in flux guides and shields, and appears then convoluted
with sensor noise. Apart from these noise sources, and in particular for ana-
log sensors, thermal drift is a major enemy (about 0.25% change in resistance
per K). Wheatstone bridge configurations minimize thermal drift substantially
(more than one order of magnitude). In the end, the MR sensor is integrated
in a complete microsystem, with its own temperature and voltage offset drift
corrections.

19.4 Conclusions

For areal densities in data storage to increase beyond 150 bit/µm2, critical ad-
vances are needed in magnetic media, and improved read head sensitivity is
required, calling for more than a “simple” scaling down of existing head technol-
ogy (dual inductive thin film-and spin valve head). Achieving low noise, stable
media is probably one of the most critical issues required to go beyond 60 to
80 bit/µm2. As bit densities increase, bit sizes shrink, and the magnetic signal
becomes weaker, to the point where the grain structure becomes a significant
noise source. Grain volumes can be reduced to the point where they can no longer
hold a magnetic charge, and will spontaneously demagnetize (magnetostatics and
thermal activation). This thermal instability, called the superparamagnetic limit
results in data loss. Both perpendicular recording and patterned media may be
ways of overcoming the superparamagnetic limit that will affect presently-known
longitudinal media above 150 bit/µm2. Increase in media anisotropy is also a so-
lution, limited by progress in high Bs materials for write heads, or recurring
to thermally assisted writing [35]. Spin valve heads are becoming a mainstream
product, but their performance, and in particular head sensitivity, must improve
as densities move towards and beyond 150 bit/µm2. Low resistance, spin depen-
dent tunneling heads may compete with spin valves above 150 bit/µm2.

As far as MRAM is concerned, the next few years will show whether they
can become a real alternative to established non-volatile technologies (Flash,
FERAM), and, if they can address part of the market taken today by conven-
tional high capacity CMOS memories (DRAM, SRAM). In other applications,
such as current, field, and position monitoring, the allowable signal to noise ratio,
and ultimately the cost, will determine which sensing element to use.
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